京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在2021年底,人工智能(AI)和机器学习(ML)领域不再是未来不确定的新生领域。人工智能和ML已经发展成为对更广泛的数据科学世界具有巨大影响力的影响领域,这一事实在今年比以往任何时候都更加真实。
然而,随着AI、ML以及随后的数据科学的不断扩展,决定数据科学团队成功与否的参数也在不断扩展。从人工智能和ML领域获得重要和深刻见解的机会取决于数据科学团队,这些团队比一个数据科学家操作一台笔记本电脑要大。对于任何一个人来说,需要获取、清理和准备分析的数据太多了--这一过程消耗了数据科学家平均工作日的很大一部分。
现代数据科学项目围绕着关于数据准备、先前的数据科学项目以及部署必须与多个数据科学共享的数据模型的潜在方法的重要信息。因此,研究数据科学团队为什么需要上下文、一致性和数据的安全协作以确保数据科学的成功是至关重要的。让我们快速检查这些需求,以便我们能够更好地理解数据科学的成功可能是什么样的。
我们对未来数据科学成功的检验从上下文开始:如果没有记录、存储和提供给数据科学家的机构知识,依赖于尝试和失败实验的迭代模型构建过程就不能持续很长时间。然而,由于缺乏适当的文件和储存,大量的机构知识经常丢失。
考虑以下常见场景:一个初级或公民数据科学家被拉进一个项目以提高他们的技能,但由于缺乏上下文,很快就会与同步和异步协作进行斗争。这些临时团队成员需要上下文来更多地了解他们正在与之交互的数据、过去解决过问题的人员以及以前的工作如何影响当前的项目前景。
正确记录项目、数据模型及其工作流的需要很容易分散数据科学家团队的注意力,更不用说单独操作的单个科学家了。领导们可以考虑选择雇佣一个自由开发者来贡献他们的时间来保存和传播机构知识,以改进现代数据科学项目的标准审查和反馈会议。这些会议以及软件系统、工作台和最佳实践可以简化对项目相关上下文的更有效捕获,从而提高未来初级和公民数据科学家的数据发现能力。
数据科学的成功需要对知识及其周围环境进行简化的管理。如果没有它,新的、初级的和公民的数据科学家可能会很难进入并为他们的项目做出有意义的贡献,这反过来导致团队重新创建项目,而不是为以前的工作做出贡献。
当涉及到金融服务、健康和生命科学以及制造业时,ML和AI领域已经为基础变革做出了贡献;然而,这些行业受制于重要的监管环境。这意味着,在受监管的环境中进行的AI项目必须是可复制的,并有清晰的审计跟踪。换句话说,以某种方式、形状或形式参与数据科学项目的IT和业务领导者需要确保在数据科学项目的结果方面有一定程度的数据一致性。
IT和商业领袖可以期待可靠的一致性水平,在进行人工智能促进的战略转移时,他们也可以享有更多的信心。当涉及到数据科学项目时,有很多风险,有很多投资依赖于它们,所以数据科学家应该有一个基础设施,在这个基础设施中,他们可以从头到尾都有保证的可复制性水平。这种完全的可复制性转化为高层管理人员正在寻找的数据的一致性,以便决定数据科学项目是否足够重要,是否符合他们的业务目标。
反过来,这些高层管理人员应该预期,随着他们的科学团队的扩大,必要的培训集和硬件需求也将扩大,以确保旧项目结果的一致性。因此,帮助管理环境的过程和系统对于数据科学团队的扩展是绝对必要的。例如,如果一个数据科学家正在使用笔记本电脑,而一个数据工程师正在运行一个云虚拟机上运行的库的不同版本,该数据科学家可能会看到他们的数据模型从一台机器到另一台机器产生不同的结果。底线是:管理人员应该确保他们的数据合作者有一种一致的方式来共享完全相同的软件环境。
最后,我们谈到安全协作的重要性。随着企业继续将他们的运营转移到在家工作的模式,组织意识到数据科学协作比面对面协作困难得多。尽管在单个数据科学的帮助下可以管理一些核心数据科学职责(数据准备、研究和数据模型迭代),但大多数业务主管错误地将协作搁置一边,从而阻碍了远程生产力。
但是如何促进项目参与者之间的有效和远程协调以及项目数据的安全?答案在于与数据科学项目有关的可共享工作文件和数据,这使得远程传播信息更加可行。随着项目相关数据的传播变得越来越简单,共享信息变得越简单,就越容易促进远程数据协作。数据科学项目的参与者可以利用基于云的工具来加强其研究背后的安全性。但太多的领导者犯了不鼓励合作的错误,降低了生产率。
近年来,数据科学领域所取得的巨大进步是前所未有的,坦率地说,也是惊人的。数据科学的进步使世界各地的公司能够解决一些问题,这些问题以前几乎没有现成的答案,如果没有人工智能和ML带来的创新的话。
然而,随着数据科学世界的不断成熟和发展,是时候让高层管理人员和他们所监督的数据科学团队从一种更加特殊和被动的完成工作的方式中迁移了。数据科学家可以用来生成上下文、一致性和更大协作的资源,如软件工作台,可能对数据科学的成功至关重要。最终,项目将需要数据科学家、工程师、分析师和研究人员更少的努力,他们将能够更好地加速该领域的持续和惊人的成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29