来源:早起Python
作者:读者投稿
最近几年,比特币一直站在风口浪尖,一度被追捧为最佳的投资产品,拥护者认为这种加密货币是一种类似于黄金的储值工具,可以对冲通胀和美元疲软。其他人则认为,比特币的暴涨只是一个经济刺激措施催生的巨大泡沫,并且必将破裂。
比特币数据很多网站都有,并且也有很多成熟的API,所以取数据非常简单,直接调用API接口即可,下面是获取与写入数据的全部代码
import requests import json import csv import time time_stamp = int(time.time()) url = f"https://web-api.coinmarketcap.com/v1/cryptocurrency/ohlcv/historical?convert=USD&slug
=bitcoin&time_end={time_stamp}&time_start=1367107200"
rd = requests.get(url = url) # 返回的数据是 JSON 格式,使用 json 模块解析 co =
json.loads(rd.content)
list1 = co['data']['quotes']
with open('BTC.csv','w' ,encoding='utf8',newline='') as f:
csvi = csv.writer(f)
csv_head = ["date","price","volume"]
csvi.writerow(csv_head)
for i in list1:
quote_date = i["time_open"][:10]
quote_price = "{:.2f}".format(i["quote"]["USD"]["close"])
quote_volume = "{:.2f}".format(i["quote"]["USD"]["volume"])
csvi.writerow([quote_date, quote_price, quote_volume])
执行后,当前目录就会生成BTC.csv数据文件
首先导入需要的包及相关设定
import pandas as pd import matplotlib as mpl from matplotlib import cm import numpy
as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import
matplotlib.animation as animation from IPython.display import HTML from datetime import datetime
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rc('axes',axisbelow=True)
mpl.rcParams['animation.embed_limit'] = 2**128
其中两句plt.rcParams[]是用来设置显示中文的
plt.rc('axes',axisbelow=True)的作用是设置外观要求,即坐标轴置底。
mpl.rcParams['animation.embed_limit'] = 2**128这句是为了生成动画而用的,由于动画默认的最大体积为20971520.字节。如果需要调整生成的动画最大体积,需要更改这个参数。
接下来数据并利用查看前5行与后5行
从表格初窥可以得知,13年初的价格在100美元左右,而到如今21年价格已经飞涨到5万左右了。具体在哪段时间飞涨如此之快呢,我们通过动态面积可视化来探索。
可视化之前,需要对数据进行处理,由于我们原本的数据是这样的
是csv格式,且Date字段是字符串类型,而在Python中运用matplotlib画时间序列图都需要datetime时间戳格式才美观,所以我们运用了如下代码进行转换
df = pd.read_csv('BTC.csv')
df['date']=[datetime.strptime(d, '%Y/%m/%d').date() for d in df['date']]
下面制作静态面积图,使用单色填充的话,可用如下代码
Span=180 N_Span=0 df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]
df_temp.head(5)
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.fill_between(df_temp.date.values, y1=df_temp.price.values, y2=0,alpha=0.75, facecolor='r',
linewidth=1,edgecolor ='none',zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',
linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0:Span+1:30],labels=df_temp.date.values[0:Span+1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['left'].set_color('none')
# 设置上‘脊梁’为无色 plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1)
#设置网格线 plt.show()
其中Span设定的是多少天的价格,这里我们使用200天。N_Span代表权重;
df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]代表的是选择到179行为止的数据,即180天。
plt.fill_between()是使用单色--红色填充
得到如下效果
但是一个颜色填充总感觉不够好看,所以下面使用渐变色填充,使用plt.bar()函数实现Spectral_r颜色映射。代码如下:
Span_Date =180
Num_Date =360 #终止日期 df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]
#选择从Num_Date-Span_Date开始到Num_Date的180天的数据 colors =
cm.Spectral_r(df_temp.price / float(max(df_temp.price)))
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0: Span_Date +1:30],labels=df_temp.date.values[0: Span_Date +1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['right'].set_color('none')
# 设置上‘脊梁’为无色 ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色 plt.grid(axis="y",
c=(217/256,217/256,217/256),linewidth=1) #设置网格线 plt.show()
这里的数据筛选有稍许不同,其中Span_Date设置初始时间,这里设置为180即从起始日开始算的180天.
Num_Date设置的是终止时间。
df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]则是用loc函数筛选从180天到终止日期的数据。
效果如下:
最后,我们来将这幅图动起来,先将刚刚的绘图部分封装
def draw_areachart(Num_Date):
Span_Date=180
ax.clear()
if Num_Date<Span_Date: df_temp=df.loc[0:Num_Date,:] df_span=df.loc[0:Span_Date,:]
colors = cm.Spectral_r(df_span.price.values / float(max(df_span.price.values)))
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1.5,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2) plt.scatter(df_temp.date.values[-1],
df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_span.price.max()*1.68)
plt.xlim(df_span.date.values[0], df_span.date.values[-1])
plt.xticks(ticks=df_span.date.values[0:Span_Date+1:30],labels=df_span.date.values[0:Span_Date+1:30],
rotation=0,fontsize=9)
else: df_temp=df.loc[Num_Date-Span_Date:Num_Date,:] colors = cm.Spectral_r(df_temp.price /
float(max(df_temp.price)))
plt.bar(df_temp.date.values[:-2],df_temp.price.values[:-2],color=colors[:-2],width=1.5,align="center",zorder=1)
plt.plot(df_temp.date[:-2], df_temp.price[:-2], color='k',zorder=2) plt.scatter(df_temp.date.values[-4],
df_temp.price.values[-4], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xlim(df_temp.date.values[0], df_temp.date.values[-1])
plt.xticks(ticks=df_temp.date.values[0:Span_Date+1:30],labels=df_temp.date.values[0:Span_Date+1:30],rotation=0,fontsize=9)
plt.margins(x=0.2) ax.spines['top'].set_color('none') # 设置上‘脊梁’为红色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色
plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1) #设置网格线
plt.text(0.01, 0.95,"BTC平均价格($)",transform=ax.transAxes, size=10, weight='light', ha='left')
ax.text(-0.07, 1.03, '2013年到2021年的比特币BTC价格变化情况',transform=ax.transAxes, size=17, weight='light',
ha='left') fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0.1,left=0.1,right=0.9,hspace=0,wspace=0) draw_areachart(150)
之后使用matplotlib包的animation.FuncAnimation()函数,之后调用上述编写的draw_areachart(Num_Date)函数。
其中输入的参数Num_Date是如静态可视化中提及的日期作用一样,赋值为np.arange(0,df.shape[0],1)。
最后使用Ipython包的HTML()函数将动画转换成动画页面的形式演示。代码如下:
import matplotlib.animation as animation
from IPython.display import HTML
fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1,hspace=0,wspace=0)
animator = animation.FuncAnimation(fig, draw_areachart, frames=np.arange(0,df.shape[0],1),
interval=100) HTML(animator.to_jshtml())
函数FuncAnimation(fig,func,frames,init_func,interval,blit)是绘制动图函数。其参数如下:
“
fig 表示绘制动图的画布名称(figure);func为自定义绘图函数,如draw_barchart()函数;frames为动画长度,一次循环包含的帧数,在函数运行时,其值会传递给函数draw_barchart (year)的形参“year”;init_func为自定义开始帧可省略;interval表示更新频率,计量单位为ms;blit表示选择更新所有点,还是仅更新产生变化的点,应选择为True,但mac电脑用户应选择False,否则无法显示。
”
最后效果就是这样
可以看到在过去的一年中,由于机构的兴趣日益增加,比特币上涨超过了6倍,最高突破58000美元/枚,当然可以看到跌起来也是非常恐怖的,关于比特币,你怎么看?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03