京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:读者投稿
最近几年,比特币一直站在风口浪尖,一度被追捧为最佳的投资产品,拥护者认为这种加密货币是一种类似于黄金的储值工具,可以对冲通胀和美元疲软。其他人则认为,比特币的暴涨只是一个经济刺激措施催生的巨大泡沫,并且必将破裂。
比特币数据很多网站都有,并且也有很多成熟的API,所以取数据非常简单,直接调用API接口即可,下面是获取与写入数据的全部代码
import requests import json import csv import time time_stamp = int(time.time()) url = f"https://web-api.coinmarketcap.com/v1/cryptocurrency/ohlcv/historical?convert=USD&slug
=bitcoin&time_end={time_stamp}&time_start=1367107200"
rd = requests.get(url = url) # 返回的数据是 JSON 格式,使用 json 模块解析 co =
json.loads(rd.content)
list1 = co['data']['quotes']
with open('BTC.csv','w' ,encoding='utf8',newline='') as f:
csvi = csv.writer(f)
csv_head = ["date","price","volume"]
csvi.writerow(csv_head)
for i in list1:
quote_date = i["time_open"][:10]
quote_price = "{:.2f}".format(i["quote"]["USD"]["close"])
quote_volume = "{:.2f}".format(i["quote"]["USD"]["volume"])
csvi.writerow([quote_date, quote_price, quote_volume])
执行后,当前目录就会生成BTC.csv数据文件
首先导入需要的包及相关设定
import pandas as pd import matplotlib as mpl from matplotlib import cm import numpy
as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import
matplotlib.animation as animation from IPython.display import HTML from datetime import datetime
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rc('axes',axisbelow=True)
mpl.rcParams['animation.embed_limit'] = 2**128
其中两句plt.rcParams[]是用来设置显示中文的
plt.rc('axes',axisbelow=True)的作用是设置外观要求,即坐标轴置底。
mpl.rcParams['animation.embed_limit'] = 2**128这句是为了生成动画而用的,由于动画默认的最大体积为20971520.字节。如果需要调整生成的动画最大体积,需要更改这个参数。
接下来数据并利用查看前5行与后5行
从表格初窥可以得知,13年初的价格在100美元左右,而到如今21年价格已经飞涨到5万左右了。具体在哪段时间飞涨如此之快呢,我们通过动态面积可视化来探索。
可视化之前,需要对数据进行处理,由于我们原本的数据是这样的
是csv格式,且Date字段是字符串类型,而在Python中运用matplotlib画时间序列图都需要datetime时间戳格式才美观,所以我们运用了如下代码进行转换
df = pd.read_csv('BTC.csv')
df['date']=[datetime.strptime(d, '%Y/%m/%d').date() for d in df['date']]
下面制作静态面积图,使用单色填充的话,可用如下代码
Span=180 N_Span=0 df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]
df_temp.head(5)
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.fill_between(df_temp.date.values, y1=df_temp.price.values, y2=0,alpha=0.75, facecolor='r',
linewidth=1,edgecolor ='none',zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',
linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0:Span+1:30],labels=df_temp.date.values[0:Span+1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['left'].set_color('none')
# 设置上‘脊梁’为无色 plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1)
#设置网格线 plt.show()
其中Span设定的是多少天的价格,这里我们使用200天。N_Span代表权重;
df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]代表的是选择到179行为止的数据,即180天。
plt.fill_between()是使用单色--红色填充
得到如下效果
但是一个颜色填充总感觉不够好看,所以下面使用渐变色填充,使用plt.bar()函数实现Spectral_r颜色映射。代码如下:
Span_Date =180
Num_Date =360 #终止日期 df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]
#选择从Num_Date-Span_Date开始到Num_Date的180天的数据 colors =
cm.Spectral_r(df_temp.price / float(max(df_temp.price)))
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0: Span_Date +1:30],labels=df_temp.date.values[0: Span_Date +1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['right'].set_color('none')
# 设置上‘脊梁’为无色 ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色 plt.grid(axis="y",
c=(217/256,217/256,217/256),linewidth=1) #设置网格线 plt.show()
这里的数据筛选有稍许不同,其中Span_Date设置初始时间,这里设置为180即从起始日开始算的180天.
Num_Date设置的是终止时间。
df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]则是用loc函数筛选从180天到终止日期的数据。
效果如下:
最后,我们来将这幅图动起来,先将刚刚的绘图部分封装
def draw_areachart(Num_Date):
Span_Date=180
ax.clear()
if Num_Date<Span_Date: df_temp=df.loc[0:Num_Date,:] df_span=df.loc[0:Span_Date,:]
colors = cm.Spectral_r(df_span.price.values / float(max(df_span.price.values)))
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1.5,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2) plt.scatter(df_temp.date.values[-1],
df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_span.price.max()*1.68)
plt.xlim(df_span.date.values[0], df_span.date.values[-1])
plt.xticks(ticks=df_span.date.values[0:Span_Date+1:30],labels=df_span.date.values[0:Span_Date+1:30],
rotation=0,fontsize=9)
else: df_temp=df.loc[Num_Date-Span_Date:Num_Date,:] colors = cm.Spectral_r(df_temp.price /
float(max(df_temp.price)))
plt.bar(df_temp.date.values[:-2],df_temp.price.values[:-2],color=colors[:-2],width=1.5,align="center",zorder=1)
plt.plot(df_temp.date[:-2], df_temp.price[:-2], color='k',zorder=2) plt.scatter(df_temp.date.values[-4],
df_temp.price.values[-4], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xlim(df_temp.date.values[0], df_temp.date.values[-1])
plt.xticks(ticks=df_temp.date.values[0:Span_Date+1:30],labels=df_temp.date.values[0:Span_Date+1:30],rotation=0,fontsize=9)
plt.margins(x=0.2) ax.spines['top'].set_color('none') # 设置上‘脊梁’为红色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色
plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1) #设置网格线
plt.text(0.01, 0.95,"BTC平均价格($)",transform=ax.transAxes, size=10, weight='light', ha='left')
ax.text(-0.07, 1.03, '2013年到2021年的比特币BTC价格变化情况',transform=ax.transAxes, size=17, weight='light',
ha='left') fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0.1,left=0.1,right=0.9,hspace=0,wspace=0) draw_areachart(150)
之后使用matplotlib包的animation.FuncAnimation()函数,之后调用上述编写的draw_areachart(Num_Date)函数。
其中输入的参数Num_Date是如静态可视化中提及的日期作用一样,赋值为np.arange(0,df.shape[0],1)。
最后使用Ipython包的HTML()函数将动画转换成动画页面的形式演示。代码如下:
import matplotlib.animation as animation
from IPython.display import HTML
fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1,hspace=0,wspace=0)
animator = animation.FuncAnimation(fig, draw_areachart, frames=np.arange(0,df.shape[0],1),
interval=100) HTML(animator.to_jshtml())
函数FuncAnimation(fig,func,frames,init_func,interval,blit)是绘制动图函数。其参数如下:
“
fig 表示绘制动图的画布名称(figure);func为自定义绘图函数,如draw_barchart()函数;frames为动画长度,一次循环包含的帧数,在函数运行时,其值会传递给函数draw_barchart (year)的形参“year”;init_func为自定义开始帧可省略;interval表示更新频率,计量单位为ms;blit表示选择更新所有点,还是仅更新产生变化的点,应选择为True,但mac电脑用户应选择False,否则无法显示。
”
最后效果就是这样
可以看到在过去的一年中,由于机构的兴趣日益增加,比特币上涨超过了6倍,最高突破58000美元/枚,当然可以看到跌起来也是非常恐怖的,关于比特币,你怎么看?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23