
如今,用APP打车是司空见惯的事情,不过你有没有发觉自己已成“大数据杀熟”的重点目标了!
复旦大学管理学院孙副教授和其团队进行了一项数据收集和分析研究,得出了一人令人震惊的结果。
研究团队遍布了国内5座不同的城市,分别进行了800多趟打车的操作,搜集到了滴滴、曹操、首汽、T3、 美团、高德和扬招等7个渠道的数据。
通过分析这些数据得出了一份“打车报告”,结果表明这些打车平台存在明显的“大数据杀熟”行为。
据更详细数据显示,苹果手机用户更容易被舒适的车辆,如:专车、优享等的司机接单,比例是非苹果手机用户的3倍。
不仅如此,苹果手机用户比非苹果手机用户享受到的打车优惠更少,苹果手机用户平均只能获2.07元优惠,而非苹果用户平均可获4.12元优惠。
你是苹果手机用户吗?你今天被“大数据杀熟”了吗?为了让大家能避开这个坑,我们先来了解下何为“大数据杀熟”。
“大数据杀熟”究竟是啥
2018年天猫、京东等平台被指责有“大数据杀熟”嫌疑,即:同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
随着大数据分析技术蓬勃发展,经营者运用已有的大量数据,如:消费偏好、频率、习惯、收入等,分析客户购买力、对商品或服务需求的程度……
依据分析结果,将同一商品或服务以不同价格卖给不同的消费者,从而获得更大的利益。
互联网“大数据杀熟”起源
互联网“大数据杀熟”鼻祖是亚马逊,2000年,亚马逊启动了著名的差别定价实验,将部分DVD碟片对新顾客报价22.74美元,而对感兴趣的老顾客报价26.24美元。
这种销售方式产生了极佳的效果,但后来被老顾客发现,最终以亚马逊赔钱并道歉告终。
“大数据杀熟”常见形式
▷ 根据用户使用设备不同而差别定价,如:苹果与安卓用户定价不同;
▷ 根据用户消费场所不同而差别定价,如:给距离商场远的用户定价更高;
▷ 根据用户消费频率不同而差别定价,如:给消费频率高的用户定价更高。
怎样避开“大数据杀熟”
▶ 网购时,偶尔换新账号,查看价格变化情况;
▶ 货比三家,提防商户隐藏信息,多了解商品;
▶ 切勿轻易被商户锁定、被套牢。
“大数据杀熟”后话
——给卖家的话
大数据分析是为给消费者提供更好的服务,差异化定价应遵守底线,保证用户的知情权,以防危及品牌的名誉,造成忠实用户的流失。
——给买家的话
没有人能避开大数据,根据消费习惯、喜好等,在线平台会给每位消费者贴上千个标签。不想被大数据“套牢”,就要跟上大数据时代的步伐,注意培养自己的数据分析思维。
大数据分析是什么?
大数据分析,为提取有用信息和形成结论,而对数据加以详细研究和概括总结的过程。简而言之,就是将数据(包括文本、音乐、文字、数字等)转化为知识、智慧的方法。
拥有数据分析思维的人,想不发光发亮都很难。因此,随着大数据时代到来,以这种思维为基础形成了一个朝阳产业,倍受社会各界人士的青睐。
现今,各大企业对数据分析能力过硬的人才,需求量也越来越大,供不应求的市场导向,让这个新风口行业的从业者薪资普遍偏高。
不过,大数据技术的出现是为更好地服务于大众,而非欺骗忠实顾客,谋取高额利益的手段。建议消费者也能多了解大数据,培养大数据思维,从而明白如何维护自己的权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14