
来源:早起Python
作者:读者投稿
最近几年,比特币一直站在风口浪尖,一度被追捧为最佳的投资产品,拥护者认为这种加密货币是一种类似于黄金的储值工具,可以对冲通胀和美元疲软。其他人则认为,比特币的暴涨只是一个经济刺激措施催生的巨大泡沫,并且必将破裂。
比特币数据很多网站都有,并且也有很多成熟的API,所以取数据非常简单,直接调用API接口即可,下面是获取与写入数据的全部代码
import requests import json import csv import time time_stamp = int(time.time()) url = f"https://web-api.coinmarketcap.com/v1/cryptocurrency/ohlcv/historical?convert=USD&slug
=bitcoin&time_end={time_stamp}&time_start=1367107200"
rd = requests.get(url = url) # 返回的数据是 JSON 格式,使用 json 模块解析 co =
json.loads(rd.content)
list1 = co['data']['quotes']
with open('BTC.csv','w' ,encoding='utf8',newline='') as f:
csvi = csv.writer(f)
csv_head = ["date","price","volume"]
csvi.writerow(csv_head)
for i in list1:
quote_date = i["time_open"][:10]
quote_price = "{:.2f}".format(i["quote"]["USD"]["close"])
quote_volume = "{:.2f}".format(i["quote"]["USD"]["volume"])
csvi.writerow([quote_date, quote_price, quote_volume])
执行后,当前目录就会生成BTC.csv数据文件
首先导入需要的包及相关设定
import pandas as pd import matplotlib as mpl from matplotlib import cm import numpy
as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import
matplotlib.animation as animation from IPython.display import HTML from datetime import datetime
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rc('axes',axisbelow=True)
mpl.rcParams['animation.embed_limit'] = 2**128
其中两句plt.rcParams[]是用来设置显示中文的
plt.rc('axes',axisbelow=True)的作用是设置外观要求,即坐标轴置底。
mpl.rcParams['animation.embed_limit'] = 2**128这句是为了生成动画而用的,由于动画默认的最大体积为20971520.字节。如果需要调整生成的动画最大体积,需要更改这个参数。
接下来数据并利用查看前5行与后5行
从表格初窥可以得知,13年初的价格在100美元左右,而到如今21年价格已经飞涨到5万左右了。具体在哪段时间飞涨如此之快呢,我们通过动态面积可视化来探索。
可视化之前,需要对数据进行处理,由于我们原本的数据是这样的
是csv格式,且Date字段是字符串类型,而在Python中运用matplotlib画时间序列图都需要datetime时间戳格式才美观,所以我们运用了如下代码进行转换
df = pd.read_csv('BTC.csv')
df['date']=[datetime.strptime(d, '%Y/%m/%d').date() for d in df['date']]
下面制作静态面积图,使用单色填充的话,可用如下代码
Span=180 N_Span=0 df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]
df_temp.head(5)
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.fill_between(df_temp.date.values, y1=df_temp.price.values, y2=0,alpha=0.75, facecolor='r',
linewidth=1,edgecolor ='none',zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',
linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0:Span+1:30],labels=df_temp.date.values[0:Span+1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['left'].set_color('none')
# 设置上‘脊梁’为无色 plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1)
#设置网格线 plt.show()
其中Span设定的是多少天的价格,这里我们使用200天。N_Span代表权重;
df_temp=df.loc[N_Span*Span:(N_Span+1)*Span,:]代表的是选择到179行为止的数据,即180天。
plt.fill_between()是使用单色--红色填充
得到如下效果
但是一个颜色填充总感觉不够好看,所以下面使用渐变色填充,使用plt.bar()函数实现Spectral_r颜色映射。代码如下:
Span_Date =180
Num_Date =360 #终止日期 df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]
#选择从Num_Date-Span_Date开始到Num_Date的180天的数据 colors =
cm.Spectral_r(df_temp.price / float(max(df_temp.price)))
fig =plt.figure(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0,left=0,right=0.9,hspace=0,wspace=0)
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2)
plt.scatter(df_temp.date.values[-1], df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xticks(ticks=df_temp.date.values[0: Span_Date +1:30],labels=df_temp.date.values[0: Span_Date +1:30],rotation=0)
plt.margins(x=0.01)
ax = plt.gca()#获取边框 ax.spines['top'].set_color('none') # 设置上‘脊梁’为无色 ax.spines['right'].set_color('none')
# 设置上‘脊梁’为无色 ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色 plt.grid(axis="y",
c=(217/256,217/256,217/256),linewidth=1) #设置网格线 plt.show()
这里的数据筛选有稍许不同,其中Span_Date设置初始时间,这里设置为180即从起始日开始算的180天.
Num_Date设置的是终止时间。
df_temp=df.loc[Num_Date-Span_Date: Num_Date,:]则是用loc函数筛选从180天到终止日期的数据。
效果如下:
最后,我们来将这幅图动起来,先将刚刚的绘图部分封装
def draw_areachart(Num_Date):
Span_Date=180
ax.clear()
if Num_Date<Span_Date: df_temp=df.loc[0:Num_Date,:] df_span=df.loc[0:Span_Date,:]
colors = cm.Spectral_r(df_span.price.values / float(max(df_span.price.values)))
plt.bar(df_temp.date.values,df_temp.price.values,color=colors,width=1.5,align="center",zorder=1)
plt.plot(df_temp.date, df_temp.price, color='k',zorder=2) plt.scatter(df_temp.date.values[-1],
df_temp.price.values[-1], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_span.price.max()*1.68)
plt.xlim(df_span.date.values[0], df_span.date.values[-1])
plt.xticks(ticks=df_span.date.values[0:Span_Date+1:30],labels=df_span.date.values[0:Span_Date+1:30],
rotation=0,fontsize=9)
else: df_temp=df.loc[Num_Date-Span_Date:Num_Date,:] colors = cm.Spectral_r(df_temp.price /
float(max(df_temp.price)))
plt.bar(df_temp.date.values[:-2],df_temp.price.values[:-2],color=colors[:-2],width=1.5,align="center",zorder=1)
plt.plot(df_temp.date[:-2], df_temp.price[:-2], color='k',zorder=2) plt.scatter(df_temp.date.values[-4],
df_temp.price.values[-4], color='white',s=150,edgecolor ='k',linewidth=2,zorder=3)
plt.text(df_temp.date.values[-1], df_temp.price.values[-1]*1.18,s=np.round(df_temp.price.values[-1],1),
size=10,ha='center', va='top')
plt.ylim(0, df_temp.price.max()*1.68)
plt.xlim(df_temp.date.values[0], df_temp.date.values[-1])
plt.xticks(ticks=df_temp.date.values[0:Span_Date+1:30],labels=df_temp.date.values[0:Span_Date+1:30],rotation=0,fontsize=9)
plt.margins(x=0.2) ax.spines['top'].set_color('none') # 设置上‘脊梁’为红色
ax.spines['right'].set_color('none') # 设置上‘脊梁’为无色
ax.spines['left'].set_color('none') # 设置上‘脊梁’为无色
plt.grid(axis="y",c=(217/256,217/256,217/256),linewidth=1) #设置网格线
plt.text(0.01, 0.95,"BTC平均价格($)",transform=ax.transAxes, size=10, weight='light', ha='left')
ax.text(-0.07, 1.03, '2013年到2021年的比特币BTC价格变化情况',transform=ax.transAxes, size=17, weight='light',
ha='left') fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(top=1,bottom=0.1,left=0.1,right=0.9,hspace=0,wspace=0) draw_areachart(150)
之后使用matplotlib包的animation.FuncAnimation()函数,之后调用上述编写的draw_areachart(Num_Date)函数。
其中输入的参数Num_Date是如静态可视化中提及的日期作用一样,赋值为np.arange(0,df.shape[0],1)。
最后使用Ipython包的HTML()函数将动画转换成动画页面的形式演示。代码如下:
import matplotlib.animation as animation
from IPython.display import HTML
fig, ax = plt.subplots(figsize=(6,4), dpi=100)
plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1,hspace=0,wspace=0)
animator = animation.FuncAnimation(fig, draw_areachart, frames=np.arange(0,df.shape[0],1),
interval=100) HTML(animator.to_jshtml())
函数FuncAnimation(fig,func,frames,init_func,interval,blit)是绘制动图函数。其参数如下:
“
fig 表示绘制动图的画布名称(figure);func为自定义绘图函数,如draw_barchart()函数;frames为动画长度,一次循环包含的帧数,在函数运行时,其值会传递给函数draw_barchart (year)的形参“year”;init_func为自定义开始帧可省略;interval表示更新频率,计量单位为ms;blit表示选择更新所有点,还是仅更新产生变化的点,应选择为True,但mac电脑用户应选择False,否则无法显示。
”
最后效果就是这样
可以看到在过去的一年中,由于机构的兴趣日益增加,比特币上涨超过了6倍,最高突破58000美元/枚,当然可以看到跌起来也是非常恐怖的,关于比特币,你怎么看?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29