
红红火火的618、双十一、双十二等电商购物狂欢节席卷中国,就算是耄耋之年的老人,或奶声奶气的孩子,都知道网购。可见,电商行业在国内的火爆程度。
然而,你是否有发现一个很奇怪的现象,在知乎上经常能看到有人质疑电子商务专业没啥用?
一般按常理而言“市场导向决定供需关系”,正如大数据的繁荣,带来的是各大高校纷纷新增大数据相关专业,报考率也逐年攀升。
可是,随着电商在国内越来越火爆,电子商务专业的前景和名声在坊间的口碑却越来越差。
有人认为,电商是一门严重被低估的专业,也有人表示它是“杂学”。总而言之,谈论最多的还是规劝趁早转专业之类的说辞。
据悉,每年电子商务专业毕业生专业对口就业率不足15%,难道火爆的电商行业,不需要专业电商人才的输入,为什么它带不火电商专业。
电子商务“火&渣”并存
所谓电子商务(电子+商务),可简单理解为网络技术与营销,是个很大、很泛的专业。
美其名曰,学下来就能文能武,然而很多学这个专业的师兄师姐们都曾迷茫过,自己似乎什么都懂,但又好像什么都不会。
因此,电商专业一直被网上盛传“没用”,甚至有人表示学了4年电商,还不如回家卖红薯。
为啥出现了这种怪象?
其实,和学计算机一样,专业本来无所谓好坏,关键在于选专业的人,是否真正了解自己所选的专业。
99%的电子商务知识源自实践,它是一门绝对无法纸上谈兵的行业。故而,只懂理论知识是远远不够滴!
一个资深电商人与电商小白的问答,值得大家深思。
问:4P学过吧?
答:学过。
问:PS学过吧?
答:学过。
问:html学过吧?
答:学过。
问:消费者心理学学过吧?
答:学过。
问:ERP跟CRM有沙盘练过吧?
答:练过。
问:那为什么你工作中都没用上?
答:……
是啊!这些实用的电商知识我们在学校都学过,但为什么一到工作中,就无所适从了呢?
这就是学电商专业和做电商人的区别,正如已将全套解剖过程背到滚瓜烂熟的学生,第一次面对尸体时同样会束手无策。
实际运用会更细化,讲究灵活应变,而大学所学理论只是知识层面的东西,你需要通过接触、操作、实践后,才能把这些学以致用。
与其说电商专业无用,不好就业,不如说你没有把学到的东西落地。
如何让学到的知识落地?
学以致用最佳办法就是复制成功的模式,复盘真实的成功案例,从其中找到脉络,顺藤摸瓜,掌握实战精髓所在。
当然,说到电商实战项目的真实数据资料,最好能来自权威的大厂中,如:京东、淘宝等。
如果您想打破电商专业无用论,从普通电商爱好者、刚入行小白、零基础等群体,快、稳、准进阶成竞争力满满的电商数据分析师领域专家、一线大厂核心骨干、电商行业权威!
京东&CDA数据分析师实战训练营精英班,绝对是您快速成功的不二选择。
京东&CDA实战训练营由CDA数据科学研究院携手京东智联云数据科学团队打造,采用一对一模式,循序渐进助力学员系统科学的掌握数据分析岗位所需的具备数据分析工具、数据分析模型,专家大咖亲授业务项目实操经验。
课程通过EXCEL分析、POWER BI商业智能、PYTHON数据挖掘等精品案例,培养学员高效决策的数字化业务思维。
实战训练营课程旨在帮助学员掌握数据洞察力,熟知数字化转型过程中的企业运营数据指标、业务数据理论与模型,稳扎稳打的成长为对数据分析平台运作具有深度洞察力的标准化全栈人才,全程深入浅出,手把手教学。
课程详情咨询
▽▽▽
轻松拿高薪
限时优惠报名中
限前100名
手慢无
——我们课程的优势
海量真实精品案例
步步分解
直击核心问题
▼
——我们学员的收获
——具体课程安排
每天少玩1H+手机
每月多赚1W+
长按下方二维码
领报名优惠资格
▼
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14