京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编译:Mika
十年前,研究人员认为让计算机来区分猫和狗几乎是不可能的。如今,计算机视觉识别的准确率已超过99%。Joseph Redmon通过一个叫YOLO的开源目标检测方法,可以迅速识别图像和视频中的目标。
10年前,计算机视觉研究者认为,要让一台电脑去分辨出一只猫和狗的不同之处,这几乎是不可能的,即便是在当时人工智能已经取得了重大突破的情况下。
Joseph Redmon家养的猫
Joseph Redmon家养的狗
但如今我们已经可以做到让它的正确率在99%以上。这个方法叫做图像分类,给它一张图,再给这张图贴上标签。通过这种方式,计算机就可以知道数千种的分类。
我是华盛顿大学的一名研究生,我正致力于一个名叫Darknet的项目,这是一个用来训练和测试计算机视觉模型的神经网络结构。
Joseph Redmon所进行的Darknet项目
让我们来看看Darknet是如何看待这张图片。
当我们在这张图片上运行识别器时,我们注意到,它不仅能判断出图片上是猫是狗,还能给出它是哪个品种的预测。这就是我们目前所达到的粒度级别。
它的预测是正确的,我的狗的确是一只阿拉斯加雪橇犬。
很明显,我们在图像识别上取得了惊人的进步。但是如果我们对这样一张图片运行识别器,会如何呢?
看一下,我们看到识别器给出了一个非常相似的预测。而且是正确的,图中是有一只阿拉斯加雪橇犬。但只使用这一个标签,我们并不能真正的了解这张图片,我们需要更强大的检测器。
我正在研究一个叫做目标检测的问题,也就是尝试将一张图上的所有目标物都找出来,然后将它们分别框起来,再加上标注。
这就是我们对这张照片运行检测器时所发生的。基于这样的结果,我们可以用计算机视觉算法做更多的事情。
我们发现,它知道这里有一只猫和一只狗。知道它们的相对位置,它们的大小,甚至还知道一些额外的信息,例如背景里有一本书。
如果你想建立一个基于计算机视觉的系统,比如说无人驾驶汽车或者机器人系统,这就是你想要得到的信息。你需要一个能与物质世界互动的系统。
当我最开始开展目标检测项目时,它要花20秒去处理一张图片。
为了理解为什么速度在这个领域是如此重要。举一个例子,这是一个2秒钟就能处理一张图片的检测器。这个检测器的速度要比处理每张图需要20秒的检测器快10倍。可以看到在它做出预测的时候,被检测的世界已经发生变化了。这对于一个应用来说是没有多大用处的。
每2秒处理一张图
如果我们将它的速度再提升10倍,这个检测器每秒可处理5张画面,这就好很多了。
每秒处理5张图
但是,举个例子。如果有任何重大的移动,它就反应不过来了。我可不想让这样的一个系统来驾驶我的汽车。
这是在我电脑上运行的实时检测系统。当我在移动时,它能顺利地追踪我。而且它强大到能适应不同的物体大小、姿势、向前、向后的改变,很了不起。
实时检测系统
如果我们想要建造一个基于计算机视觉的系统,那么这就是我们真正需要的。
仅仅是几年的时间,我们就从每张图20秒提升到了每张图20毫秒,速度提高了1000倍。我们是如何做到的呢?
过去,目标检测系统会将这张图片分成很多小区域,然后在每一块区域运行一下识别器。在识别器中获得最高分数的输出就会被认为是这张图片的检测结果。这涉及到要在一张图片上运行数千次识别器,以及数千次的神经网络评估才能获得检测结果。
而现在,我们训练了可以做出所有检测的单一网络,它能同时生成边界盒和类别概率。
使用我们的系统,不需要为了生成检测结果去重复上千数次地看同一张图片,只看一次就行了。这也是为什么我们称之为,目标检测的"YOLO(you only look once)法"(只看一次)。
有了这个速度,我们就不仅限于识别图像了,还可以实时处理视频。现在我们不仅看到了猫和狗,还能看到它们走来走去,互相嘻戏。
这是一个我们在微软的COCO数据库上,用80种不同种类的物品训练过的检测器。包含了各种东西,像勺子、叉子、碗等常见物品。
还有各种奇特的东西,动物、汽车、斑马、长颈鹿。
现在我们要做点儿有趣的事情,我们的摄像头将要对准观众区看看能检测出什么。
我们把检测阀值调低一点,这样就可以找出更多的观众。看下我们能不能找出这些停车标志,我们发现了一些背包。所有这些都是在电脑上实时处理的。
请大家记住,这是一个通用的目标检测系统。因此我们可以将它训练用于任何领域的图像识别。
我们在无人驾驶汽车中,用来发现停车标志 行人和自行车的代码,同样可以用于在组织活检中找出癌细胞。全球已经有很多研究者正在利用这一技术在医学、机器人学等方面取得了进展。
今天早上,我刚读到一篇文章,人们在内罗毕国家公园对动物数量进行普查,使用了YOLO作为检测系统的一部分。因为Darknet是一个开源项目,在公共领域任何人都可以免费使用。
但是我们想要让检测器能被更多人使用,也更好用因此通过结合模型优化,网络二值化和近似法,我们实际上已经可以在手机上进行目标检测了。
我真的很激动,因为我们在初级计算机视觉问题上有了强大的解决方案,同时任何人都可以使用它来做些什么。
接下来就看所有在座的各位,以及世界上所有能够使用这个软件的人了。我已经等不及想要看看,人们会用这一技术创造出什么来了,谢谢大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09