
公众号:数据海洋
作者:数据海洋
“一个公司数据指标体系好坏,直接决定数据应用的好坏!”
先请各位看官一起思考下面这些问题:
· 什么是数据指标?
· 数据指标价值是什么?
· 数据指标谁来运营?
· 谁在用数据指标?
· 好数据指标的特征有哪些?
先思考这几个问题。
数据指标是企业运营过程中,对已记录历史信息进行处理,转化成为数字。根据特定商业目的:对相关数字按一定的业务逻辑,使用一定的技术手段进行加工处理后,成为描述、衡量、分析、预测业务结果的工具。
这个定义是我自己的理解和经验总结。
1、数据指标核心是服务商业的。例如:让你很清楚公司的经营状况。通过本月累计销额指标你可以知道你的业务进度是否达到目标;通过销售额占比数据指标的分析你可以很清楚知道与同行比你处于什么水平。
2、数据指标的统计是有逻辑的。你为什么要设计这个指标,用来衡量什么,通过这个指标的变化你可以反映出业务背后有什么变化。例如:客单价,衡量的是用户购买情况;客单价变化可以反映用户在你这购买意愿的变化。
3、数据指标需要使用一定的技术手段。其实整个数据指标是作为大数据平台处理数据的指导。我们说ETL的开发,数据计算能力、存储的要求,就是围绕指标与对指标拆分、关联的维度来决策的。
数据指标的价值,核心一点是:数据指标是服务商业的。通过使用数据指标,对数据进行分析,更清楚了解自己企业经营状况,可以更快,更好的做出各种决策,从而让企业的决策风险降低,更容易把握市场机会,提升商业目标,帮助企业取得竞争优势的一种“工具”。
既然是工具,就没有好坏,就看你能不能用好,适合不适合你用。
一般来说,数据指标是由业务团队来定义,然后技术团队/数据团队负责实现。业务看的数据指标一般是以报表,仪表盘,图表等为载体。
为什么数据指标是需要运营呢?运营就意味着数据指标的定义不是一直不变的,因为是服务商业的,商业一定是不断变化中的。大公司都会有数据指标生命周期管理的机制,也就是会有一套元数据管理工具。但对于大多数公司来说,有一份excel能清晰记录最好的数据指标大家随时可以查就不错了。
数据指标的用户应该是公司的各个角色。不同角色关注的指标内容不一样。
如果从我们数据应用角度来看,数据指标是后续数据报表、数据分析、数据挖掘用到最基础的原材料,如果原材料不好,后面的数据分析、数据挖掘不管用多么先进的方法都是白搭。
“如果连数据指标都统计不对,后面都是在做无用功!”
一个好的数据指标应该要符合下面的几个特征:
1、准确性。这是最根本的一条原则。这个准确有二个层面的意思,一个是数据指标在技术实现过程中,是准确的,不会出现代码逻辑写错,源数据取错。二个统计源数据的源头的数据是对的,如果统计数据指标的基础数据都是错了,那就更666了!一个公司数据收集与记录的准确、完整也一定是一个持续迭代的工程,当然这属于哪一个话题,有空再论。
2、有效性。数据指标的能真实反映要能衡量相对的业务场景商业目标,例如:要针对衡量一个网站流量质量设计一个指标,使用UV来衡量是错误的。使用跳出率来衡量,有一定的有效性,但还是不够有效;使用转化率也许才是比较合适的(不同公司所要追求的商业目标不一样,所以设计的数据指标是不一样的),用最近期望用户完成的商业动作访问数/进来的访客数。【实际工作中,衡量某个场景数据指标不一定就是立即能找到最合适的】
3、周期性。数据指标需要定期去复盘。像KPI的指标定义,例如:销售额可能根据当前商业的目标不同,计算口径可能会发生很大的变化。同时,对各个数据指标也要定期进行复盘,是否还可以继续衡量,数据指标还是否有意义。随时KPI指标的变化,往往很多指标的口径也要变更,数据开发最怕就是这个,口径变换要重刷历史。
4、可实现性。在实际企业中,可能受限数据的完整性因素,很多指标没有办法计算得到。例如:公司的市场占有率往往是很难统计,因为整个市场份额这个数据很难获取。电商中每个订单的成本的计算也很难,广告费用、仓储、人员工资、仓储、物流配送等。所以在数据指标的可实现性上往往需要先实现简单的,再根据数据应用深入,数据团队技术强大不断再完善复杂的指标。
小结:每个数据指标的设计都是要涉及对商业场景的理解和熟悉的过程,数据分析师或者数据产品经理应该去思考每个数据指标刚才说的几个问题。如果只是按商业的要求写个文档,进行数据统计。那没有什么意义,你只会离业务越来越有“距离”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08