
来源:AI入门学习
作者:伍正祥
在克里米亚战争期间,南丁格尔发现战地医院的卫生条件恶劣导致很多士兵死亡。因此,她开始研究伤员的死亡和卫生环境的关系,并试图用统计数据说服维多利亚女王改善军事医院的卫生条件。但是她也担心,女王那么忙,没有时间看她那厚厚的报告和那些复杂的表格数据。于是,她设计了上面的这个生动又有趣的图表,巧妙的展示了部队医院季节性的死亡率。她自己给它取名叫鸡冠花图(coxcomb)。
我们先来看看最早的南丁格尔玫瑰图展示了什么样的数据。这张图展示的是1854年4月到1855年3月这一年间士兵的死亡情况。其中:
1)绿色表示死于可预防疾病的士兵人数;
2)红色表示死于枪伤的人数;
3)黑色表示死于其他意外的人数。
从图中可以看出,在这一年间,死亡人数最多的并不是在战争中受枪伤(红色部分),大部分的士兵是死于可预防疾病(绿色部分),特别是冬天的时候(1854年11月-1855年2月),死于可预防疾病的士兵人数大幅增加。这也反映出医院的卫生条件、保暖对于伤员的康复是多么的重要。因此,才说服了女王大人改善医院条件。
这么有气质的图表,我们来看看经过这么多年的发展,大家都是怎么用的。尽管外形很像饼图,但本质上来说,南丁格尔玫瑰图更像在极坐标下绘制的柱状图或堆叠柱状图。只不过,它用半径来反映数值(而饼图是以扇形的弧度来表示数据的)。但是,由于半径和面积之间是平方的关系,视觉上,南丁格尔玫瑰图会将数据的比例夸大。因此,当我们追求数据的准确性时,玫瑰图不一定是个好的选择。但反过来说,当我们需要对比非常相近的数值时,适当的夸大会有助于分辨。
1. Facebook 和 twitter的用户对比
1)图表中包括性别、年龄、教育、收入等11个分类的对比信息指标,每个指标占用的圆周的角度相同,即任一指标的扇区角度为(360/11=32.723度)。
2)在“Gender”,“Income”,“Age”,“Education”四个指标中,又被分别划成几个不同的区段。
2、新冠肺炎全球疫情形势
案例1:facebook数据
直接使用上面facebook的数据,关注公众号AI入门学习回复【facebook】获取csv文件,用R语言画个示例,数据格式需要长格式,如下:
#facebooks数据 library(ggplot2) facebook = read.csv("facebook.csv",header=T,stringsAsFactors = FALSE) ggplot(facebook, aes(x = 类别1,y=比例,fill = 类别2)) + geom_bar(alpha = 0.93,stat="identity") + coord_polar()+ theme_bw()+ theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框
theme(panel.background = element_rect(fill = "black"))+ #黑色背景 theme(panel.grid.major.x = element_line(colour =
"SpringGreen2", size = 0.3))+ #网格线设置 theme(panel.grid.major.y =
element_line(colour = "SpringGreen2", size = 0.3))+ #网格线设置 ylim(-0.3,1.1)+ scale_fill_discrete(c=1000, l=100) ggsave('rose.png',dpi = 1080)#保存为高清格式,dpi越大越清晰
图形如下,可以根据个人喜好对颜色进行切换,当然,各种标注,可以在PPT中完成,多个对比的,也可以在PPT中进行拼接。
用R自带数据集画一个不带网格线的
dsmall = diamonds[sample(nrow(diamonds),5000),] ggplot(dsmall, aes(x = clarity, fill = cut)) + geom_bar(alpha = 0.85) + coord_polar() + theme_bw() + theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框
theme(panel.background = element_rect(fill = "black"))+ #黑色背景 theme(panel.grid=element_blank())+ ylim(-50,1000)+ scale_fill_manual(values = alpha(c("DarkOrchid1", "SpringGreen", "Magenta","Cyan","OrangeRed1"))) ggsave('rose.png',dpi = 1080)
案例2:多图组合
首先,介绍个函数,多个图组合到一起的
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { library(grid) plots <- c(list(...), plotlist) numPlots = length(plots) if (is.null(layout)) { layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols, nrow = ceiling(numPlots/cols)) } if (numPlots==1) { print(plots[[1]]) } else { grid.newpage() pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) for (i in 1:numPlots) { matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = matchidx$col)) } } }
开始绘图部分,下六组数据替换分别跑一次,得到 p1,p2,p3,p4,p5,p6,然后用上面定义的函数组合即可
par(mar=c(0,0,0,0)) #c(4,3,8,2,2,1) #c(4,3,5,2,2,10) #c(15,3,5,8,2,8) #c(1,3,5,3,2,8)
#c(1,3,9,3,2,3) #c(2,12,9,3,2,3) data = data.frame(value= c(2,12,9,3,2,3), type = c('B','A','C','D','E',F)) p1 = ggplot(data, aes(x =type, y=value, fill=type)) + geom_bar(stat = "identity", alpha = 0.99) + coord_polar() + theme_bw() + theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框 theme(panel.background =
element_rect(fill = "black"))+ #黑色背景 theme(panel.grid=element_blank())+ scale_fill_manual(values = alpha(c("OrangeRed1", 'gray91',"SpringGreen", "Magenta","Cyan", "DarkOrchid1"))) multiplot(p1,p2,p3,p4,p5,p6,cols=3)
结果如下:
重新替换一批数据得到下图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08