京公网安备 11010802034615号
经营许可证编号:京B2-20210330
丽丽在某公司干了3年设计,月薪从6500元涨到7500元,由于工作繁忙,公司新招了个设计,很开心有人分担的她,在某次与新人聊天中郁闷了。
公司竟给新人试用期9000的工资,看到对方的设计不如自己,丽丽十分不舒服,这几年为公司拼死拼活完成任务,就拼了个寂寞。
老员工李哥表示,“刚招的应届生工资竟和自己持平,心里堵得慌,感觉不错的公司突然成了鸡肋。”
阿明是某互联网公司开发,在公司四年多,目前年薪在30万元左右,而同样岗位,今年新入职的刚毕业学生年薪给到了28万了。
——工资倒挂常态化的主要因素
现如今,很多企业都存在薪酬倒挂现象,尤其民营企业已见怪不怪,只是让老员工心寒程度不同罢了。
由于精力和资源有限,那些不在核心岗,又不是骨干的老员工,薪资高低老板根本无暇顾及,甚至可以说根本是件无关紧要的事情。
即便高层领导或老板知道对老员工不公平,但因担心人工成本会涨上去,侵蚀利润,也就默认了。
现实是残酷的,任何企业都不会因为老员工的介意,主动停止这种“工资倒挂”的行为。
只要是职场人,谁都会成为老员工,无法扭转这种现象的发生,面对新进员工工资比自己高,会出现负面情绪很正常。
不过,在这种失衡的心态中滞留太久,对个人和公司的发展都没有益处。
——如何摆脱工资倒挂带来的负面情绪?
既然这里聊的都是老员工,我们就以35岁为一个分水岭,来聊聊具体该怎么做?
如果你离35岁还远
▶ 选择越老越值钱行业,别频繁跳槽,成某领域专家和资深人士,才能确保核心竞争力;
▶ 有一技傍身,如学热门的Python、powerBI等技能,让自己无可取代;
▶ 学理财和规划,手中有存款心中不慌乱,即便给自己放个假也底气十足。
如果你已超过35岁
▶ 拒绝无意义的攀比,不主动聊任何有关薪资方面的话题,否则难受的只会是自己;
▶ 调整自身职业定位,如遭“薪资倒挂”是你的瓶颈,可停下来思考,考虑是否转行等;
▶ 客观合理评价自己,看清优势和劣势,如果选择机会多,此处不留爷自有留爷处;
▶ 努力提升能力水平,学新技能、新知识,不被安逸束缚,成为老板心尖上的人;
▶ 合理用钱和存钱,管住消费欲望,调整财务状况,经济基础就是底气所在。
——哪些行业越老越值钱
再放眼国内,选择好的行业是远离工资倒挂的不二法门,尤其那种朝阳且越老越值钱的行业。
随着科学技术的日新月异,人工智能将取代会计、技工、司机等岗位,但内外科医生、数据分析师、律师、开发工程师等,却无法被冰冷的机器替代。
2020年,全球有7500万工作岗位被人工智能替代,却也衍生出了1.33亿个新的就业岗位。
未来5年,中国大数据行业人才需求总量有望突破2000万。各行各业的就业市场迫切需要多元化的数据分析人才,从而推动数据分析岗具备了薪资高、分工细、路子广,选择多等特征,是远离“工资倒挂”烦恼的绝佳选择。
总而言之,任何持之以恒成为了某一技术线的专家的人,基本都能摆脱“工资倒挂”的困恼,实现“越来越值钱”的职业目标,大家2021年,加油!!
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22