京公网安备 11010802034615号
经营许可证编号:京B2-20210330
丽丽在某公司干了3年设计,月薪从6500元涨到7500元,由于工作繁忙,公司新招了个设计,很开心有人分担的她,在某次与新人聊天中郁闷了。
公司竟给新人试用期9000的工资,看到对方的设计不如自己,丽丽十分不舒服,这几年为公司拼死拼活完成任务,就拼了个寂寞。
老员工李哥表示,“刚招的应届生工资竟和自己持平,心里堵得慌,感觉不错的公司突然成了鸡肋。”
阿明是某互联网公司开发,在公司四年多,目前年薪在30万元左右,而同样岗位,今年新入职的刚毕业学生年薪给到了28万了。
——工资倒挂常态化的主要因素
现如今,很多企业都存在薪酬倒挂现象,尤其民营企业已见怪不怪,只是让老员工心寒程度不同罢了。
由于精力和资源有限,那些不在核心岗,又不是骨干的老员工,薪资高低老板根本无暇顾及,甚至可以说根本是件无关紧要的事情。
即便高层领导或老板知道对老员工不公平,但因担心人工成本会涨上去,侵蚀利润,也就默认了。
现实是残酷的,任何企业都不会因为老员工的介意,主动停止这种“工资倒挂”的行为。
只要是职场人,谁都会成为老员工,无法扭转这种现象的发生,面对新进员工工资比自己高,会出现负面情绪很正常。
不过,在这种失衡的心态中滞留太久,对个人和公司的发展都没有益处。
——如何摆脱工资倒挂带来的负面情绪?
既然这里聊的都是老员工,我们就以35岁为一个分水岭,来聊聊具体该怎么做?
如果你离35岁还远
▶ 选择越老越值钱行业,别频繁跳槽,成某领域专家和资深人士,才能确保核心竞争力;
▶ 有一技傍身,如学热门的Python、powerBI等技能,让自己无可取代;
▶ 学理财和规划,手中有存款心中不慌乱,即便给自己放个假也底气十足。
如果你已超过35岁
▶ 拒绝无意义的攀比,不主动聊任何有关薪资方面的话题,否则难受的只会是自己;
▶ 调整自身职业定位,如遭“薪资倒挂”是你的瓶颈,可停下来思考,考虑是否转行等;
▶ 客观合理评价自己,看清优势和劣势,如果选择机会多,此处不留爷自有留爷处;
▶ 努力提升能力水平,学新技能、新知识,不被安逸束缚,成为老板心尖上的人;
▶ 合理用钱和存钱,管住消费欲望,调整财务状况,经济基础就是底气所在。
——哪些行业越老越值钱
再放眼国内,选择好的行业是远离工资倒挂的不二法门,尤其那种朝阳且越老越值钱的行业。
随着科学技术的日新月异,人工智能将取代会计、技工、司机等岗位,但内外科医生、数据分析师、律师、开发工程师等,却无法被冰冷的机器替代。
2020年,全球有7500万工作岗位被人工智能替代,却也衍生出了1.33亿个新的就业岗位。
未来5年,中国大数据行业人才需求总量有望突破2000万。各行各业的就业市场迫切需要多元化的数据分析人才,从而推动数据分析岗具备了薪资高、分工细、路子广,选择多等特征,是远离“工资倒挂”烦恼的绝佳选择。
总而言之,任何持之以恒成为了某一技术线的专家的人,基本都能摆脱“工资倒挂”的困恼,实现“越来越值钱”的职业目标,大家2021年,加油!!
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20