京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多维度拆解是数据分析里最重要的一种分析方法,通过不同的维度去观察同一组数据,从而洞查数据异动背后的原因。
多维度拆解的适用场景,对单一指标的构成或比例进行拆解分析,这种场景往往适用于像分栏目的播放量和新老用户比例等等。
对业务流程进行拆解分析,一般适用于从不同渠道浏览到添加购物车到购买的这种全局的转化流程,像有些跨区域的产品,不同的区域活动的效果自然不同,这时候我们就可以从不同省份的活动情况来进行分析。
对需要还原行为发生的场景时进行拆解分析,比较适用于一些直播类的产品,比如需要去观察打赏主播的等级、性别,来自哪个频道进行多维度的拆解。
案例解析
举个栗子:我们做少儿英语培训的产品,进行了一波推广营销活动后,想看下推广效果怎么样,如何查看呢? 首先我们从【进入网站事件】进行分析: 第一个维度:从用户性别进行拆分,由下图可以看出,进入网站的用户61%都是女性。相比孩子的父亲,母亲更关注少儿英语培训,这也跟大部分家庭由母亲带孩子有关。
第二个维度:从操作系统进行拆分,可以看出大部分用户来自iOS用户。据相关数据统计,女性用户更喜欢用苹果设备,这也与前面的性别分析是一致的。
第三个维度:按渠道来源进行拆分,由下图可以看出42%的用户来自于订阅号。这是因为我们在活动开始前做了一场公开课,并在订阅号上做了相关推送。
第四个维度:从城市等级这个维度进行拆分,咱们的产品定位是中等偏高收入的人群,这类用户主要集中在一线城市,这也符合我们产品目前的定位。
第五个维度:从进入网站这个事件按新老用户进行拆分,由下图可以发现,每天的DAU在过去的一周内没有发生什么波动,但是按新老用户拆分后发现,随着这一波的推广,咱们的新增用户数一直在涨的,但是DAU却没有啥变化,这是因为老用户一直在往下跌,这一涨一跌交集之后,DAU的趋势没有啥变化,这背后反映的情况是:引入了大量的新用户,但是没有成功的留住他们。
经过推广活动之后,注册-下单-支付的这个流程的转化情况如下图,那么从哪些方面提升转化率呢?我们就可以用多维度拆解的方法,对这个业务流程进行拆解。
首先从渠道来源进行拆解分析,由下图可以看出,百度来的流量虽然不少,但是下单和支付的转化率相比其他渠道还是挺低的。那像这种情况咱们可以加大其他渠道的广告投放力度,减少百度的投放力度。
其次从城市进行拆解分析,在郑州这座城市用户下单的意愿不强烈,这表明我们的产品可能不适合二级城市(新一级城市)的用户。
最后从操作系统拆解分析,由下图可以发现,iOS用户支付能力比较强,这也跟我们的产品大部分是女性用户有关。
基于以上拆解的案例可以看出,多维度拆解法的运作原理非常简单:指标或是业务流程按照多维度拆分,来观察数据的变动,从而找出问题的原因。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03