要处理数据异常,我们要先知道什么是数据异常。首先要有数据,才能知道什么是“异常”,百度百科的解释是:指非正常的,不同于平常的。比方如突然的涨,突如其来的跌。
数据涨跌是我们在日常工作中,最容易被发现的现象,也是我们平时工作中要去分析的。也就是说,平时数据没有波动,也许我们不需要去分析,但是如果数据有涨或者跌我们都需要去查出原因的。
为什么涨和跌都要关注?
相信很多朋友跟我一样,起初接触到数据,我只关心跌,为什么昨天的数据跌了?并去分析其原因,也会关心涨,但并不关心为什么涨,就像买股票一样,跌了痛心疾首,并分析原因,涨了满心欢喜,后悔自己为什么不买入多一点儿。
在数据分析的过程中,我们不仅仅要关心跌,以便采取相应动作,减缓跌的趋势,也更要关心涨,弄清楚涨的原因,并放大它,或者说是复制它!
数据异动分析方法论
针对异常数据的处理,通常有五个步骤:
1.发现异常
就像你发现昨天数据跟往前不一样,猛涨了还是猛跌了,通过观测数据发现异常。
2.确定问题
发现异常之后,我们要确定这个异常是不是一个问题,有多严重,可以用对比分析法从时间维度上进行周同比、月同比或者是年同比。
3.确定原因
用多维度拆解法,对于这个异常的指标从不同的维度去拆解,找出原因。
4.针对性解决问题
找到原因之后,就是针对性的解决问题了,根据问题的原因,动用公司的相关资源,去解决这个问题。
5.执行
最后就是执行解决方案,把这个异常数据真正的从异常到执行,完成一个闭环。
案例解析
举个栗子:你现在是做社交APP产品的,在处理数据的过程中,发现某一天的数据异常,该如何分析?
发现问题:在对数据进行统计汇总时发现某一天的异常数据。
确定问题:数据跌了那么多,问题是不是很严重呢?往期有没有这么大的浮动?
由上图的周同比和月同比数据可以看出,往期是没有这个问题的,那说明这是一个严重的个例,表示这一天确实发生了什么事情,造成数据异常的情况。
确定原因:那是不是哪个省份出了问题呢?下面我们按省份进行查看,由下图可以看出,这次数据的猛跌是全国范围内的,基本上所有的省份都有下迭,这样就排除了某个区域下跌的原因。
那是不是设备出问题了呢?再来看不同操作系统的数据有什么不同,由下图可以看出安卓和iOS在这天都出现了下跌,所以排除了设备出问题的可能性。
那是不是服务挂了呢?按小时或者分钟来查看数据是不是符合平时流量规律?
通过上图可以看出,在这一天的0:01分,平台的数据为0,出现了断崖式下跌。而对于社交产品,以往这个时间用户活跃度是很高的,由此可以确定,这一天的数据异常确实是因为服务挂了。
针对性解决问题:联系相关负责人制定及时有效的解决方案。
执行:落实和监测解决方案的执行效果。
以上五个步骤看起来简单,但它是基于对业务洞察的基础之上的,需要根据以往的经验,才能做出这些判断 。如果对自己的业务不了解,再多的工具或是方法论,都是没有用的。所以,需要大家在工作中,不断的积累,不断的验证。
通过上面的案例解析,发现在确定问题时我们提了很多假设,其实数据只是验证假设的支撑工具。而这些假设是基于对业务有足够了解的基础之上的,在这个过程中,需要不断的去试错,不断的积累行业及业务的洞察,才能做出这些假设。
常见的假设
1.活动影响:查对应活动页面及对应动作的数据波动,关注活动是否有地域属性
通常市场或者运营会去做一些活动,所以如果数据出现问题,先看看PV、UV等数据,看是不是活动的影响。
2.版本发布:将版本号作为维度,区分查看
有时候数据出现异常也有可能是新版本的发布带来的波动,所以也可以把版本拎出来看,如果发布的是V1.5,我们可以对比着看看V1.3、V1.4这三个版本数据,看是否正常。
3.渠道投放:查看渠道来源变化
WEB端的渠道来源有很多很多,但是像APP就有点困难,这时可以看看新增的渠道来源,来看看变化影响。
4.策略调整:策略上线时间节点,区分前后关键指标波动
工作中我们会经常改变策略,比如说搜索策略,推荐策略等等,但是呢策略改变之后上线,它肯定有上线时间节点的,这时候可以把这个时间节点像刚才讲的案例那样,拆分成分钟来观察。
5.服务故障:明确故障时间,按时间维度进行小时或者分钟级别进行拆分
通过上面的案例可以看出,服务故障出问题是有一个明确时间的,按照上面案例讲的方法来观察,按分钟来查看,看有没有出现断崖式下跌,这个时候就可以明确是不是服务出现了故障。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03