一、季节性分解(分析-预测-季节性分解)
“季节性分解”过程可将一个序列分解成一个季节性成分、一个组合趋势和循环的成分和一个“误差”成分。此过程是对统计方法I(也称为比率与移动平均数方法)的实现。
1、示例。科学家想要对特定气象站的臭氧层每月测量结果进行分析。目标是确定数据中是否存在任何趋势。为了揭示真实趋势,由于季节性影响,科学家首先需要考虑所读取资
料中的变异。可使用“季节性分解”过程来删除任何系统性的季节性变化。然后对季节性调整序列执行趋势分析。
2、统计量。一组季节性因子。
3、数据。变量应为数值型。
4、假设。变量不应包含任何内嵌的缺失数据。至少必须定义一个周期性日期成分。
二、模型(分析-预测-季节性分解)
1、模型类型。“季节性分解”过程提供了用于对季节性因子建模的两种不同方法:乘法或加法。
1.1、乘法.季节性成分是一个因子,用来与经过季节性调整的序列相乘以得到原始序列。实际上,“趋势”会评估与序列的总体水平成正比的季节性成分。无季节性变动的观察值的季节性成分为1。
1.2、加法.将季节性调整项加到到季节性调整的序列以获取观察值。此调整尝试从序列中移去季节性影响,以查看可能被季节性成分“掩盖”的其他兴趣特征。实际上,“趋势”会评估不依赖于序列的总体水平的季节性成分。无季节性变动的观察值的季节性成分为0。
2、移动平均权重。“移动平均权重”选项允许您指定在计算移动平均数时如何处理序列。这些选项仅在序列的周期为偶数时才可用。如果周期为奇数,则所有点的权重都相等。
2.1、所有点都相等.使用等于周期的跨度以及所有权重相等的点来计算移动平均数。如果周期是奇数,则始终使用此方法。
2.2、按0.5对端点加权.使用等于周期加1的跨度以及以0.5加权的跨度的端点计算具有偶数周期的序列的移动平均。
三、保存(分析-预测-季节性分解-保存)
“季节性分解”过程创建了四个新变量(序列),并且每个指定的序列都带有以下三个字母的前缀:
SAF。季节性调整因子。这些值指示每个周期对序列水平的影响。
SAS。季节性调整序列。这些值是在删除序列的季节性变化之后获得的。
STC。平滑的趋势循环成分。这些值显示序列中出现的趋势和循环行为。
ERR。残差或“误差”值。这些值是在从序列中删除季节性、趋势和循环成分之后保留的。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析师一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
业务数据分析师 CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III >了解更多<
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
在当今信息爆炸的时代,数据分析扮演着愈发关键的角色。从数据的收集、清洗、分析到最终的报告撰写,数据分析涵盖了广泛而深入的 ...
2024-12-02揭秘数据分析求职之路 在当今竞争激烈的就业市场中,数据分析专业的就业形势备受关注。究竟数据分析领域的求职难度如何?让我们 ...
2024-12-02数据分析就业挑战与应对策略 在当今社会,数据分析专业的就业并非一帆风顺。竞争激烈,技能要求高,许多人发现找工作并不容易。 ...
2024-12-02在追求成为一名出色的数据分析师的道路上,技术和软技能同样重要。技术技能涵盖了诸多方面,其中包括: 统计学知识 探索庞大数据 ...
2024-12-02从技术到软技能:数据分析的全貌 学习数据分析是一项综合性任务,涉及多方面技能。这些技能主要可以划分为技术技能和软技能两大 ...
2024-12-02作为初学者踏入数据分析领域,掌握一系列关键能力至关重要。这些技能不仅涵盖基础工具的使用,还包括深入的分析方法、对业务的理 ...
2024-12-02欢迎探寻数据分析的奇妙世界!对于初学者而言,融会贯通数据领域的复杂性可能有些令人望而却步。然而,不必惊慌,因为我们将一起 ...
2024-12-02欢迎踏上学习数据分析的旅程!数据已经渗透到我们生活的方方面面,成为决策和创新的关键。无论是提升工作效率、探索数据领域还是 ...
2024-12-02欢迎踏上数据分析的学习之旅!无论是为了提升工作效率,转行成为数据分析师,还是满足对数据分析的好奇心,掌握数据分析技能都将 ...
2024-12-02在当今数据驱动的世界中,选择合适的数据分析工具至关重要。不同工具在功能和应用场景上存在显著差异,影响着数据处理和分析的效 ...
2024-12-02选择适合你的数据分析工具 在进行数据分析时,选择合适的工具至关重要。不同工具有各自的特点和适用场景,因此了解每种工具的优 ...
2024-12-021. 技术驱动与市场需求 数据分析领域正随着技术的不断革新而迎来蓬勃发展。大数据、人工智能(AI)、机器学习(ML)等前沿技术的 ...
2024-12-02在当今数字化浪潮中,数据分析扮演着关键角色。数据分析能力的提升引领了行业趋势,深刻影响着各个领域:从技术进步到市场需求增 ...
2024-12-02如何用Excel提升数据分析能力 在数字时代中,数据是无处不在的。对于从业者而言,掌握数据分析的技能至关重要。而在众多数据处理 ...
2024-12-02初探数据分析世界 数据分析是当今数字化时代的核心。无论你是想拓展专业技能还是仅仅对数据分析感兴趣,掌握各种工具至关重要。 ...
2024-12-02从 Excel 到 SQL:打造数据分析之路 数据分析的世界如同辽阔的大海,每个人都可以在其中找到属于自己的航道。无论你是初出茅庐的 ...
2024-12-02在当今信息爆炸的时代,数据已经成为企业决策的关键驱动力。然而,仅有海量数据并不足以带来洞察和价值。数据分析能力的提升是关 ...
2024-12-02重要能力要素 数据分析能力的提升是一个综合性过程,涉及多方面技能和知识。对于想要在数据领域脱颖而出的人来说,以下关键要素 ...
2024-12-02在当今信息爆炸的时代,数据成为企业决策的关键驱动力。成为一名优秀的数据分析师,并非仅仅掌握数据的本质,更需要具备多方面的 ...
2024-12-02作为数据分析师,踏入这个令人兴奋且快速发展的领域既激动人心又具挑战性。要在这个领域取得成功并不仅仅意味着掌握数据分析工具 ...
2024-12-02