京公网安备 11010802034615号
经营许可证编号:京B2-20210330
医疗行业大数据应用的三个案例
文章从华大基因推出肿瘤基因检测服务、大数据预测早产儿病情、广东省人民医院利用大数据调配床位3个医疗行业大数据应用案例中,以应用背景、数据源、图说场景、实现途径、应用效果5个视角去看待大数据在医疗的应用状况。
应用背景:
伴随着生物技术、大数据技术的发展,个体基因检测治疗疾病已经成为现实。其中,最广为人知的是美国好莱坞女星安吉丽娜•朱莉,在 2013 年经过检测她发现自身携带致癌基因——BRCA1 基因,为防止罹患卵巢癌,于 2015 年切除了卵巢和输卵管。目前,国内外已经有多家基因检测机构,如我国的华大基因、贝瑞和康、 美国的 23andMe、 Illumina 公司等。华大基因一直致力于肿瘤基因组学研究,已经研究 20 多类癌症。近日,华大基因推出了自主研究的肿瘤基因检测服务,采用了高通量测序手段对来自肿瘤病人的癌组织进行相关基因分析,对肺癌、乳腺癌、胃癌等多种常见高发癌症进行早期、无创伤检测。
数据源:
检测数据:患者血清、口腔黏膜数据、基因测序等。
其它数据:体检数据、电子病历、遗传记录、患者调查、地理区域以及生活条件等。
图说场景:
实现路径:
首先采取患者样本,通过测序得到基因序列,接着采用大数据技术与原始基因比对,锁定突变基因,通过分析做出正确的诊断,进而全面、系统、准确地解读肿瘤药物与突变基因的关系,同时根据患者的个体差异性,辅助医生选择合适的治疗药物,制定个体化的治疗方案,实现“ 同病异治” 或“ 异病同治” ,从而延长患者的生存时间。
应用效果:
癌症诊断和预测。肿瘤医院的病人中有 60%至 80%刚到医院时就已经进入中晚期,癌症早期的筛查可以帮助患者有针对性的改善生活习惯或者采取个体化的辅助治疗,有益于身体健康;同时将癌症扼杀在摇篮里,从而降低日后巨大的医药开支和生活困扰。助力个性化医疗。结合生物大数据,挖掘疾病分子机制最终可以做到更好的筛查,更好的临床指导以及更好用药的过程。
应用背景:
安大略理工大学的卡罗琳·麦格雷戈( Carolyn McGregor)博士和一支研究队伍与 IBM 一起和很多医院合作,用一个软件来监测处理即时的病人信息,然后把它用于早产儿的病情诊断。
数据源:
个人体征数据:心率、呼吸、体温、血压和血氧含量。
其它数据:孕妇产检数据、电子病历、遗传数据等。
实现路径:
系统会监控 16 个不同地方的数据,比如心率、呼吸、体温、血压和血氧含量,这些数据可以达到每秒钟 1260 个数据点之多。在明显感染症状出现的 24 小时之前,系统就能监测到早产儿细微的身体变化发出的感染信号,及早预测控制早产儿的病情,从而提高新生儿的出生率。
应用效果:
预测病情。早产儿的稳定不是病情好转的标志,只有通过海量的数据并且找出隐含的相关性才能发现提早知道病情,医生就能够提早治疗,也能更早地知道某种疗法是否有效,这一切都有利于病人的康复。
应用背景:
起因于国外医院的经验以及广东省人民医院各专业科室差异很大的病床使用率。长期以来,优势专业病源充足,病人候床情况严重,排队入院,相反有些专业空床情况明显,病床使用率仅 65%左右。为此管理层打出了模糊临床二级分科、跨科收治病人、集中床位调配权的一套“ 组合拳” 。
数据源:
患者数据:挂号数据、电子病历、患者基本数据等。
医院数据:各科室床位使用情况、诊疗活动、平均住院费用、平均住院周期等。
实现路径:
对跨科收治病人之后的科与科之间的工作量、收入、支出、分摊成本等指标进行合理的划分,强化了入院处的集中床位调配权,解决病人入院排队情况,使医院更好地履行了社会责任,同时也给增加了医院的效益。
应用效果:
提高病床使用率。病床使用率由 87%提高到 92%,优势专业候床排队现象明显减少。
支持决策判断。优势专科与弱势专科的病人在地域构成比、平均住院费用等标上存在显著差异,支持决策判断。
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06