京公网安备 11010802034615号
经营许可证编号:京B2-20210330
编辑:Mika
作者:唐一楠 CDA Level Ⅰ 持证人

唐一楠 LEVEL Ⅰ 持证人
大家好,我叫唐一楠,是一名CDA Level Ⅰ 持证人。在这里很高兴跟大家分享一下我的备考心得。
我是数据科学与大数据技术专业的大四学生,就读于中南财经政法大学统计与数学学院。
大四上学期考研失利后,我打算找数据分析相关的工作。我认为如果能拿到CDA的证书的话,可以在求职过程中让我具有有一定的竞争力。
因为我是大四,学校已经没有什么课了,每天有很多空闲时间,大概每天学习两个小时,一直看视频课程,等到所有课程过完之后,就开始做模拟题。大概复习了一个月时间吧。
我看视频课程时,用的是2倍速,很快过一遍,没听懂的地方重复几次,仔细看看。
在学习数据库部分时,跟着课程自己亲手操作下,会对 SQL 语言更加熟悉,有助于我们记忆。等到全部课程听完做模拟题的时候,我是一个单元一个单元的做,盯对过后将知识点添加到课件中,再将整个单元过一遍。
总之,要提高自觉性,课程中没听懂的知识点要主动上网查找理解记录。
感觉备考中遇到的难点就是第六章,关于电子商务业务方面我是第一次接触,很多的专业术语我都没有听过,像雪花模型星座模型这些,都是很难理解的东西。所以对于这方面的知识我会查找一些课外的资料,积极上网去补全自己的知识漏洞。
接下来就是统计学方面的知识,虽然我自己是学统计的,但是这一节还是很有难度,公式和分布都要去理解,还要知道各个检验要用在什么情形中,总之就是要多看一些例子,想清楚它们的区别。
统计与概率论的部分我推荐贾俊平的《统计学》,里面对各种分布,区间分布,假设检验等讲述的都很清楚易懂,对考试有很大帮助。
Level Ⅰ 中的其他板块我并没有看额外的书籍,跟着官网课程中的视频认真学习就好了。
在我看来,获得CDA Level Ⅰ 认证是对自己目前在数据各方面能力的一个肯定,希望今后自己能够在数据分析的路上越走越远,学到更多的知识和技能,提升自己,实现自我价值。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16