
CDA数据分析师 出品
编辑:Mika
Q1: 在数据分析岗位的面试中,该怎么做自我介绍?
通常情况下在数据分析岗位的自我介绍当中,我们应该注意以下几点:
第一,通过2~3分钟的自我介绍,要让企业来了解你的个人能力,这是很关键的。
比如说在你简历当中所涉及到的一些信息,你不需要完全去背诵它,你只要把关键词说清楚就好了。
还有一定要强调你的个人经历与目标岗位的这种匹配程度。
对于数据分析而言,关键就是你的数据应用能力与目标岗位的这种匹配。
比如说我们会涉及到一些power BI,常见的excel的常见函数的应用,还有涉及到一些这个可视化工具的应用,包括Python这些相关的工具,我们在面试过程当中要重点的去描述。
那么除了这些之外,我们还要去关注数据分析报告的撰写,因为很多的企业它是要求一个综合能力。
除了你的数据分析工具以外,你还要强调一下分析报告的能力,以及你之前有没有相关的数据分析的项目,尤其是你的项目的成就,这点是一定要讲清楚的。
Q2: 在数据分析面试中,企业在进行技能评估的时候会关注哪几点?
通常情况下,企业在进行技能评估的时候会关注以下几点:
比如说,通过你的项目经历来判断一下你具体的这种技术的应用能力。
这里面会包含你在以往的项目当中涉及到的需求分析,然后产品规划,包括一些项目协调方面出现的一些细节上的问题,包括你的技能工具的应用。
这里面比如说为什么出现这个项目,你的需求目的是什么?你是如何解决的?
同时你为什么选择这个工具,在应用这个工具当中你有没有遇到什么困难,然后你当时是怎么处理的?
还有一些属于减分项。
比如说你在描述项目时候说的比较简短,或者是说的滔滔不绝,拉得很冗长,都是一个减分项。
你重点应该是放在项目当中的工具如何应用,呈现怎样的结果上。
Q3: 在数据分析岗位面试中,问到了情景假设该如何应对?
通常情况下企业在面试中问到了情景假设的问题,它的目的是在于基于star的原则下,对于你某个产品的设计的优缺点以及改进的建议,以及设计整个产品的方案思路进行验证,重点在于什么?
比如说你的产品在设计过程当中的一些痛点在哪里,你是如何解决的。
然后针对你的岗位核心期待的内容,比如说你这个产品设计的用户画像核心是什么?你的用户画像的特征又是什么?这些是企业比较关注的。
而且还要关注一下你对于用户画像在采集过程当中的一些工具应用,这些都是企业对于你技术能力评估的关键点。
尤其是对于数据分析这一块,如果你从一开始你对于需求的目的搞不清的话,那么实际上你的产品设计,包括你的数据分析的核心逻辑本身就是有问题的。
那么我们所关注的是后期你在展现自己技能的时候,一定要结合你自己项目需求的核心目标来分解你的技术,来告诉面试官我解决了哪些问题,为什么应用这个工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11