京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算和大数据 应用各不相同_数据分析师考试
现在,云计算和大数据无疑都是很火的概念,业内对他们的探讨也愈演愈烈,那么云计算与大数据的不期而遇又产生了怎样的联系呢?有人说云计算和大数据是双胞胎,两个是不同的个体,互相依赖又相辅相成,也有人说大数据是来搅局的。
云计算VS大数据
对此,IBM全球高级副总裁、系统与科技部(STG)总经理Rod Adkins认为,当前全球IT领域有了令人振奋的发展趋势和挑战,现在每天有大量数据和信息生成,这为大数据分析提供了机会;数据中心的挑战也为IT提供了新机会,比如云计算,能降低数据中心成本;IBM希望通过智慧的运算,实现智慧的地球的愿景。
英特尔亚太研发有限公司总经理、软件与服务事业部中国区总经理何京翔认为,大数据本身其实是信息革命的一个新引领。在未来几年随着物联网的发展,可能会有2100亿个RFID或者集群,在我们的环境之中,如果未来的移动互联、物联网如果变成现实,我们的生活会被传感器、会被数据采集装置所拥抱,这时候数据量将更大。这些数据量仅仅是数据,并不能解决问题,它要从数据变成信息、变成智能、变成商业价值,这才能够体现出真正的大数据的价值。
VMware全球高级副总裁范承工认为,在过去三年当中,看到大数据的发展从无到有,市场上大家说大数据的趋势,三年前可能还没有人说这个词,现在已经如火如荼。然而,现在除了数据本身发生了改变,云计算也使数据变得更加分散,在这样的趋势下,传统数据库对于海量数据的需求、快的需求、开发者数据多样化的需求难以满足,使各种各样的解决方案大行其道。
EMC的大数据和存储专家、EMC资深产品经理李君鹏认为,大数据本身就是一个问题集,云技术是目前解决大数据问题集最重要有效的手段。云计算提供了基础架构平台,大数据应用在这个平台上运行。目前公认处理大数据集最有效手段的分布式处理,也是云计算思想的一种具体体现。
对于大数据给云计算带来的影响,Teradata技术总监Stephen Brobst表示,公有云架构对数据仓库没有影响,因为企业的CIO不会无缘无故把财务数据或者客户数据放到云上,那样很危险。然而,是私有云架构确实有影响:第一,通过私有云,可以巩固数据集市,减少利用率不足的问题;第二,可以通过灵敏的方式将数据集成,实现业务价值。
大数据和云计算应用各不同
其实云计算与大数据的不同之处在于应用的不同,主要在两个方面:
第一,在概念上两者有所不同,云计算改变了IT,而大数据则改变了业务。然而大数据必须有云作为基础架构,才能得以顺畅运营。
第二,大数据和云计算的目标受众不同,云计算是卖给CIO的技术和产品,是一个进阶的IT解决方案。而大数据是卖给CEO、卖给业务层的产品,大数据的决策者是业务层。由于他们能直接感受到来自市场竞争的压力,必须在业务上以更有竞争力的方式战胜对手。
大数据不仅仅是Hadoop
Hadoop是Apache基金会发起和研发的,是目前业界公认的开放平台之一。授权公司可以发布自己相应的Hadoop版本。以Hadoop为代表的分布式系统,是大数据系统必要组成部分。必要性体现在现在的大数据中很多数据是机器产生的数据,或者是物联网各种各样的探测器、电脑产生的日志,这些是人为产生的,而且数量巨大,不适合把它直接放到数据库中去,而Hadoop就提供了全新的方式,可以轻松进行平面扩展,把这些数据放在库里进行任意的数据分析。Hadoop成功的建立了这个环境,使得围绕Hadoop的软件能够提供各种各样的功能,完成智能分析工作。
然而,大数据不仅仅是Hadoop,在对数据进行分析时,用户可以把数据放池子里,Hadoop则把这些数据分成几百个、几千个节点,这是在特定的某些应用场景必须进行的部分。但是更多的应用场景是需要实时的反应,互动的反应,这时候就需要其他技术,包括内存类检索技术,甚至在数据产生时要进行实时反应的技术。这些技术都结合在一起,才是一个完整的大数据处理系统。
各大厂商应对大数据
不论大数据时代是否真的来临,作为企业级服务厂商都应该走在受众的前面,应对大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08