京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与互联网之间存在着什么关系_数据分析师考试
因互联网的迅猛发展与普遍接入,使“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题,尤其是决策与预测问题的新方法、新手段。大数据与互联网的发展相辅相成。一方面,互联网的发展为大数据的发展提供了更多数据、信息与资源;另一方面,大数据的发展为互联网的发展提供了更多支撑、服务与应用。近年来,移动通信与移动互联网、传感器、物联网等互联网新技术、新应用、新发展模式的推陈出新,更使互联网变得越来越“无所不在”,由此而产生的数据越来越多、越来越“大”。继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。
据2014 年1 月中国互联网络信息中心(CNNIC)最新发布的《第33 次中国互联网络发展状况统计报告》称,截至2013 年12 月,中国网民规模达到了6.18 亿(全球网民数量在28 亿左右)、全年新增网民5358 万、互联网普及率45.8%、手机网民规模达到了5 亿(全球手机用户数量在48 亿左右)、全年新增手机网民8009 万,数量巨大、增长迅猛;此外,2013 年,中国网民人均每周上网时长达到了25 小时,相比2012 年增长4.5小时。就大数据而言,仅中国,在拥有这么多数据“接收者”与“读者”的同时,就潜在地拥有了这么多数据的“发送者”与“作者”,并潜在地一周二十几小时在“生产”与“输出”各种各样的数据,这些数据可以是文本、音频、视频、位置、图片等结构化的、半结构化的或非结构化的数据,信息消费、信息交互、信息活动等已成为人们日常工作与生活的重要内容,人们越来越感觉“一日不可无网”。近年来,随着互联网技术与应用向“物”的世界的急剧延伸和扩展,物联网应运而生,未来全球可挂网上的“物”的数量将比上网的“人”的数量要大得多,必将产生更“大”的数据,这些将极大推动经济社会、生产生活、思维观念、政府政务、社会管理、社会安全等的变化与发展。
当然,大数据与互联网的发展在带来巨大机遇的同时,也带来了巨大挑战,如何建设好、应用好、管理好、发展好大数据与互联网,保证其安全,对广大的技术人员与管理人员、应用领域与各级政府提出了新课题、新要求、新挑战。
大数据的基本特性与体系框架
1. 基本特性
大数据是指数量/ 容量规模在PB 级(即1015 字节)以上的数据,其基本特性主要体现在所谓的“4V”上:
* 体量巨大(Volume)
* 种类繁多(Variety)
* 蕴含的商业价值高(Value)
* 要求的处理速度快(Velocity)
如图1 所示。
面对巨大、复杂、高速、变化不定的大数据,需要有别于传统数据处理技术的、全新的技术体系、分析方法和处理模式。
利用新技术、新方法、新模式,从数量巨大和种类繁多的数据中、在有限的时间内快速获得有价值的信息,就是大数据,化“数”为“据”、定“不确定性”、发现规律、辅助决策、预测未来,正是大数据的价值所在,也是互联网时代,大数据走向企业、走向社会、走向应用并实现自身不断发展的潜力所在。在大数据与互联网时代,数据将成为经济社会运行中不可或缺的核心资源。中国正朝着这个时代方向在努力奔跑,但还有一段距离,还有不少的路要走。基于对大数据的研究与利用,将形成新的、巨大的产业链,涉及大数据技术、大数据工程、大数据科学、大数据应用等众多领域。
2. 体系框架
从体系框架来看,大数据主要由三部分组成:
* 数据采集与准备体系
* 数据建模与分析体系
* 分析结果解释与数据质量评价体系
当中最核心、最关键的部分是数据建模与分析体系,由过去更多依托“炒菜”式的试验方法来发现规律,转为从“大”的历史数据、已有数据中找寻事物之间的内在联系与潜在规律、消除“不确定性”及为决策与预测提供强有力支撑,是大数据区别于过去分析与研究方法的最大特点。
从应用层次来看,大数据分析可分为三个基本层次:
* 仅将数据分析当作单独工具使用,不专门建系统;
* 将数据分析嵌入系统,成为部门级应用;
* 数据分析的企业级应用,将之作为整个企业决策与运营的“CPU”。
目前,国内应用数据分析技术和工具(当然这离大数据的要求还有很大距离)的企业基本还处于第一层次,某些企业能够做到第二层次,第三层次的则可以说基本还没有,只有达到了第三层次,使数据分析真正成为企业的核心,才能认为跨入了大数据的门槛。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22