京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与互联网之间存在着什么关系_数据分析师考试
因互联网的迅猛发展与普遍接入,使“大”量数据的获取、聚集、存储、传输、处理、分析等变得越来越便捷,大数据逐渐发展成为一门新学科、一套新学说以及一种分析与解决问题,尤其是决策与预测问题的新方法、新手段。大数据与互联网的发展相辅相成。一方面,互联网的发展为大数据的发展提供了更多数据、信息与资源;另一方面,大数据的发展为互联网的发展提供了更多支撑、服务与应用。近年来,移动通信与移动互联网、传感器、物联网等互联网新技术、新应用、新发展模式的推陈出新,更使互联网变得越来越“无所不在”,由此而产生的数据越来越多、越来越“大”。继数字时代、信息时代、互联网时代后,人类又进入了大数据时代。
据2014 年1 月中国互联网络信息中心(CNNIC)最新发布的《第33 次中国互联网络发展状况统计报告》称,截至2013 年12 月,中国网民规模达到了6.18 亿(全球网民数量在28 亿左右)、全年新增网民5358 万、互联网普及率45.8%、手机网民规模达到了5 亿(全球手机用户数量在48 亿左右)、全年新增手机网民8009 万,数量巨大、增长迅猛;此外,2013 年,中国网民人均每周上网时长达到了25 小时,相比2012 年增长4.5小时。就大数据而言,仅中国,在拥有这么多数据“接收者”与“读者”的同时,就潜在地拥有了这么多数据的“发送者”与“作者”,并潜在地一周二十几小时在“生产”与“输出”各种各样的数据,这些数据可以是文本、音频、视频、位置、图片等结构化的、半结构化的或非结构化的数据,信息消费、信息交互、信息活动等已成为人们日常工作与生活的重要内容,人们越来越感觉“一日不可无网”。近年来,随着互联网技术与应用向“物”的世界的急剧延伸和扩展,物联网应运而生,未来全球可挂网上的“物”的数量将比上网的“人”的数量要大得多,必将产生更“大”的数据,这些将极大推动经济社会、生产生活、思维观念、政府政务、社会管理、社会安全等的变化与发展。
当然,大数据与互联网的发展在带来巨大机遇的同时,也带来了巨大挑战,如何建设好、应用好、管理好、发展好大数据与互联网,保证其安全,对广大的技术人员与管理人员、应用领域与各级政府提出了新课题、新要求、新挑战。
大数据的基本特性与体系框架
1. 基本特性
大数据是指数量/ 容量规模在PB 级(即1015 字节)以上的数据,其基本特性主要体现在所谓的“4V”上:
* 体量巨大(Volume)
* 种类繁多(Variety)
* 蕴含的商业价值高(Value)
* 要求的处理速度快(Velocity)
如图1 所示。
面对巨大、复杂、高速、变化不定的大数据,需要有别于传统数据处理技术的、全新的技术体系、分析方法和处理模式。
利用新技术、新方法、新模式,从数量巨大和种类繁多的数据中、在有限的时间内快速获得有价值的信息,就是大数据,化“数”为“据”、定“不确定性”、发现规律、辅助决策、预测未来,正是大数据的价值所在,也是互联网时代,大数据走向企业、走向社会、走向应用并实现自身不断发展的潜力所在。在大数据与互联网时代,数据将成为经济社会运行中不可或缺的核心资源。中国正朝着这个时代方向在努力奔跑,但还有一段距离,还有不少的路要走。基于对大数据的研究与利用,将形成新的、巨大的产业链,涉及大数据技术、大数据工程、大数据科学、大数据应用等众多领域。
2. 体系框架
从体系框架来看,大数据主要由三部分组成:
* 数据采集与准备体系
* 数据建模与分析体系
* 分析结果解释与数据质量评价体系
当中最核心、最关键的部分是数据建模与分析体系,由过去更多依托“炒菜”式的试验方法来发现规律,转为从“大”的历史数据、已有数据中找寻事物之间的内在联系与潜在规律、消除“不确定性”及为决策与预测提供强有力支撑,是大数据区别于过去分析与研究方法的最大特点。
从应用层次来看,大数据分析可分为三个基本层次:
* 仅将数据分析当作单独工具使用,不专门建系统;
* 将数据分析嵌入系统,成为部门级应用;
* 数据分析的企业级应用,将之作为整个企业决策与运营的“CPU”。
目前,国内应用数据分析技术和工具(当然这离大数据的要求还有很大距离)的企业基本还处于第一层次,某些企业能够做到第二层次,第三层次的则可以说基本还没有,只有达到了第三层次,使数据分析真正成为企业的核心,才能认为跨入了大数据的门槛。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01