
大数据时代新闻业谋变 学者:不少媒体陷“误区”
传媒业受到大数据时代的冲击,已经不是危言耸听。
据报道,美国新闻集团近日对旗下的道琼斯新闻出版部门进行重组。包括道琼斯通讯社、《华尔街日报》在内的新闻机构将经历近百人规模的裁员。与此同时,集团将增加数十个数字新闻的职位,包括社交媒体服务、读者数据分析等,将资源转移至数字媒体及核心报道领域。据悉,通过重组,道琼斯公司希望让新闻编辑室“彻底转型”,成为世界第一大数字新闻组织。
传统媒体裁员已不是什么新鲜事,关键在于裁员之后,是紧缩银根苟活,还是壮士断腕谋变。《华尔街日报》的选择是,拥抱大数据,转向数字市场寻求增长。
大数据时代,强调的是对大规模数据综合处理的能力。这意味着,传统媒体必须适应新的信息生产和传播方式,既能生产数据,也能对数据进行解读分析的综合处理,为受众提供个性化的新闻内容。
在中国,也有人在做相同的打算。6月4日,阿里巴巴投资12亿元入股上海文广集团旗下的第一财经,意图发挥双方在传媒与大数据领域的资源优势,打造具有全球影响力的新型数字化财经媒体与信息服务集团。
“希望打造中国的《华尔街日报》、彭博,发出真正代表世界这一面的声音。”马云毫不掩饰自己在大数据上的“野心”。
大数据在发力
大数据的力量,最直观地表现,在于对新闻采写这一核心领域的入侵。
机器人取代记者一度让传统媒体人胆寒,此前,美联社、《纽约时报》已经开始使用机器人撰写一些财经、体育类等程式化的稿件,因为这两个领域都涉及到大量波动性强的数据;而在新闻聚合阅读领域,精确的“算法”逐渐取代人工,不少公司甚至“没有一名编辑记者”。
当然,这并不意味着传统媒体人已经“被后浪拍到沙滩上”。大数据是传统媒体的竞争对手,也可以成为媒体的方法和工具。从“靠专家说话”到“靠数据说话”,大数据时代对媒体人专业能力的素养要求更上一层楼。
有效地“加工”数据,可以更接近事实的情状。在此基础上,通过数据“提纯”,进行深度解读和分析。而进一步的“淘金”,更能把埋没于海量数据中的珍贵内容呈现给受众。日前,苹果公司高调招聘编辑团队,便体现了大数据时代下人的价值。
大数据的力量,还体现在放大了受众的声音与价值。
反馈,曾是传统媒体的“硬伤”。但从社交媒体中收集到的众声喧哗,更充分地呈现出受众的意见和态度。更重要的是,大数据拓展了媒体用户分析的广度与深度,不仅整体地描绘出受众的面貌,更能具体地描绘出每一个用户的独特需求,在此基础上,媒体的个性化服务(如新闻推送、广告投放),也许有一天真的像一颗颗“魔弹”,击中用户的“痛点”。
新闻面貌在变化
面对大数据的考验,传统媒体站在十字路口。要转型,意味着对既有新闻生产运行体系的改造,意味着软硬件的投入;不转型,势必在大数据的大潮中被侵蚀或吞没。这些都考验着媒介管理者的视野和气魄。
新闻行业本身正在或深刻、或细微地发生变化,这些也昭示着传统媒体转型的方向。
一方面,新闻的内容正在发生变化。除了新近发生或正在发生的事实,传统媒体更需要突破时间的桎梏,主攻基于大数据的预测性新闻和由数据驱动的深度报道。
有学者认为,媒体要成立专门的部门,或者依靠与外部的合作,建立起一个数据积累与分析的常规机制。这意味着,未来的媒体对于既掌握数据分析和数据挖掘,又秉持专业新闻理念的融合性人才有广泛的需求。盲目投入搭建平台,忽视专业的管理、分析体系的搭建和人才的引进培养,这恰恰是不少媒体陷入的“大数据误区”。
另一方面,新闻的呈现方式也在发生变化。新闻图表作为一种形象的、可视化的方式,使新闻进入“读图时代”。
2014年,数据新闻《青岛中石化管道爆炸》获得亚洲出版业协会的卓越新闻奖,这是中国新闻史上首次由程序员斩获新闻奖。而随着HTML5的异军突起,数据新闻的表现形式愈发地多样化。从2009年开始,包括英国《卫报》、财新传媒在内的国内外媒体已先后组建了数据新闻团队,可视化新闻已经从“配角”变为“主角”,从“噱头”变为“看头”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08