
大数据云时代 智能交通系统的机遇与挑战(1)_数据分析师考试
盘点近几年的IT领域热门词汇:大数据、云计算、虚拟化、云存储、云服务等,几乎贯穿到所有信息技术领域的产品推广、解决方案和系统规划中。这意味着未来信息领域发展和建设的大时代——云时代的来临。
作为云时代海量数据的来源之一,安防视频监控行业随着智慧城市和智能交通的快速发展、移动互联设备的快速激增,产生了海量的非结构化视音频数据,带动了大数据的存储、管理、分析等应用。面向云时代,业界同仁一拥而上、热血沸腾,无论是IT供应商、存储厂商、还是解决方案提供商都不甘落后,雨后春笋般的纷纷提出基于计算、存储、网络等多层次虚拟化的数据中心解决方案,投入大量资源,推出云存储、云计算等系统产品。
如果说到大数据对智能交通领域起到的影响,那肯定要从交通大平台谈起。天地伟业交通指挥中心管控平台是为交通指挥系统服务的统一信息平台,实现信息交换与共享、快速反应决策与统一调度指挥。通过对采集到的交通数据分析、加工处理,来实施交通控制、管理、决策和指挥。该系统是集合了高科技前端采集技术与后端智能化分析决策软件的整合系统,具有极强的兼容性和扩展性,能够从点到线、从点到面地进行区域联网,从而最终形成覆盖整个城市的安全防护系统。
交通指挥中心管控平台以实战需求为重点,依托警用地理信息系统,实时监测并协调组织区域内的各种交通流,保证区域内道路网交通负荷处最佳状态,及时发现、处理各种突发事件,疏导交通;对管区交通状况进行监测,监视,有效组织各种交通流;科学调度警力,紧急救援及路障清理力量;处理紧急事件、事故。有效监测各种违法行为,依法纠正相关违法行为。整合现有智能交通系统资源,重点建立交通视频监控,公路车辆智能监测记录系统、信号控制系统、诱导控制系统、交通信息采集系统等。增强基层交警主动发现,快速处置,有效管控,严格、科学执法。系统可以与公安部PGIS警用地理信息系统无缝对接,也可以建立独立的地理信息系统。并且其它交通信息进行交互关联,系统接口技术、通信技术与公安部要求一致。
该平台具有极强的实用性,可以为决策者提供实时的信息,并根据汇总的实时信息提供多种应急解决方案和警情趋势分析。
以天地伟业为例,智能交通管控平台有哪些核心技术呢?
1、云技术:系统采用云技术进行设计,支持云存储及云转发功能。
云存储是在云计算(cloud computing)概念上延伸和发展出来的一个新的概念,是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。 当云计算系统运算和处理的核心是大量数据的存储和管理时,云计算系统中就需要配置大量的存储设备,那么云计算系统就转变成为一个云存储系统,所以云存储是一个以数据存储和管理为核心的云计算系统。
云转发则是通过流媒体服务器集群的基础上实现的负载均衡和故障替换,有效避免了因为服务器故障而导致的平台问题。
2、中间件技术:在中心平台的集成中,要实现不同操作系统、不同数据库之间的跨平台的分布式应用。采用中间件技术,可以在不改变原有系统的前提下,实现已有系统的信息整合。构造完整的、健全的信息集成系统,可以很好地把不同部门的多种软件及信息数据结合为一个有机的协作整体。在中心平台的建设中,中间件技术将起到关键的作用,是数据处理系统、信息发布系统的实施基础。中心平台的基础中间件将充分考虑信息平台的实际需要和特点(如:多源异构数据整合等),并选用成熟的、符合国际标准的中间件(如J2EE等)。
3、XML 和Web Services 技术:中心平台当中的数据具有多源异构的特点,对于此类数据的处理首先要求对数据的描述要有简单易行的一套标准。XML是现在流行的数据交换标准,特别适合表述和交换复杂的数据对象和类型。在信息平台的建设过程中,数据采集及数据处理系统把XML作为数据格式描述的统一标准,并纳入数据规范的制定当中。同时,在数据分析中,也便于采用数据挖掘、OLAP(联机事务分析)等技术的应用。另外Web Services 技术支持XML,SOAP,WSDL, UDDI等开放标准,可以通过HTTP协议实现穿越防火墙的软件互操作和数据交换,实现跨越各种技术的软件集成。
4、WEBGIS技术:平台的GIS发布基于WEBGIS技术,WebGIS是利用Web技术来扩展和完善地理信息系统的一项技术。WEBGIS可采用多主机、多数据库进行分布式部署,通过Internet/Intranet实现互联,是一种浏览器/服务器(B/S)结构,服务器端向客户端提供信息和服务,浏览器(客户端)具有获得各种空间信息和应用的功能。WebGIS很容易跟Web中的其他信息服务进行无缝集成,可以建立灵活多变的GIS应用,具有良好的扩展性。
针对海量数据的分析,天地伟业结合大数据分析技术更贴近实战业务的应用。
数据深层信息研判:
由于系统采集的数据量巨大,在已有数据的搜索和碰撞外,还需挖掘潜在的风险信息,一方面实现潜在作案车辆的数据分析和预警;另一方面为破案提供研判分析和有用数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08