京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据云时代 智能交通系统的机遇与挑战(1)_数据分析师考试
盘点近几年的IT领域热门词汇:大数据、云计算、虚拟化、云存储、云服务等,几乎贯穿到所有信息技术领域的产品推广、解决方案和系统规划中。这意味着未来信息领域发展和建设的大时代——云时代的来临。
作为云时代海量数据的来源之一,安防视频监控行业随着智慧城市和智能交通的快速发展、移动互联设备的快速激增,产生了海量的非结构化视音频数据,带动了大数据的存储、管理、分析等应用。面向云时代,业界同仁一拥而上、热血沸腾,无论是IT供应商、存储厂商、还是解决方案提供商都不甘落后,雨后春笋般的纷纷提出基于计算、存储、网络等多层次虚拟化的数据中心解决方案,投入大量资源,推出云存储、云计算等系统产品。
如果说到大数据对智能交通领域起到的影响,那肯定要从交通大平台谈起。天地伟业交通指挥中心管控平台是为交通指挥系统服务的统一信息平台,实现信息交换与共享、快速反应决策与统一调度指挥。通过对采集到的交通数据分析、加工处理,来实施交通控制、管理、决策和指挥。该系统是集合了高科技前端采集技术与后端智能化分析决策软件的整合系统,具有极强的兼容性和扩展性,能够从点到线、从点到面地进行区域联网,从而最终形成覆盖整个城市的安全防护系统。
交通指挥中心管控平台以实战需求为重点,依托警用地理信息系统,实时监测并协调组织区域内的各种交通流,保证区域内道路网交通负荷处最佳状态,及时发现、处理各种突发事件,疏导交通;对管区交通状况进行监测,监视,有效组织各种交通流;科学调度警力,紧急救援及路障清理力量;处理紧急事件、事故。有效监测各种违法行为,依法纠正相关违法行为。整合现有智能交通系统资源,重点建立交通视频监控,公路车辆智能监测记录系统、信号控制系统、诱导控制系统、交通信息采集系统等。增强基层交警主动发现,快速处置,有效管控,严格、科学执法。系统可以与公安部PGIS警用地理信息系统无缝对接,也可以建立独立的地理信息系统。并且其它交通信息进行交互关联,系统接口技术、通信技术与公安部要求一致。
该平台具有极强的实用性,可以为决策者提供实时的信息,并根据汇总的实时信息提供多种应急解决方案和警情趋势分析。
以天地伟业为例,智能交通管控平台有哪些核心技术呢?
1、云技术:系统采用云技术进行设计,支持云存储及云转发功能。
云存储是在云计算(cloud computing)概念上延伸和发展出来的一个新的概念,是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。 当云计算系统运算和处理的核心是大量数据的存储和管理时,云计算系统中就需要配置大量的存储设备,那么云计算系统就转变成为一个云存储系统,所以云存储是一个以数据存储和管理为核心的云计算系统。
云转发则是通过流媒体服务器集群的基础上实现的负载均衡和故障替换,有效避免了因为服务器故障而导致的平台问题。
2、中间件技术:在中心平台的集成中,要实现不同操作系统、不同数据库之间的跨平台的分布式应用。采用中间件技术,可以在不改变原有系统的前提下,实现已有系统的信息整合。构造完整的、健全的信息集成系统,可以很好地把不同部门的多种软件及信息数据结合为一个有机的协作整体。在中心平台的建设中,中间件技术将起到关键的作用,是数据处理系统、信息发布系统的实施基础。中心平台的基础中间件将充分考虑信息平台的实际需要和特点(如:多源异构数据整合等),并选用成熟的、符合国际标准的中间件(如J2EE等)。
3、XML 和Web Services 技术:中心平台当中的数据具有多源异构的特点,对于此类数据的处理首先要求对数据的描述要有简单易行的一套标准。XML是现在流行的数据交换标准,特别适合表述和交换复杂的数据对象和类型。在信息平台的建设过程中,数据采集及数据处理系统把XML作为数据格式描述的统一标准,并纳入数据规范的制定当中。同时,在数据分析中,也便于采用数据挖掘、OLAP(联机事务分析)等技术的应用。另外Web Services 技术支持XML,SOAP,WSDL, UDDI等开放标准,可以通过HTTP协议实现穿越防火墙的软件互操作和数据交换,实现跨越各种技术的软件集成。
4、WEBGIS技术:平台的GIS发布基于WEBGIS技术,WebGIS是利用Web技术来扩展和完善地理信息系统的一项技术。WEBGIS可采用多主机、多数据库进行分布式部署,通过Internet/Intranet实现互联,是一种浏览器/服务器(B/S)结构,服务器端向客户端提供信息和服务,浏览器(客户端)具有获得各种空间信息和应用的功能。WebGIS很容易跟Web中的其他信息服务进行无缝集成,可以建立灵活多变的GIS应用,具有良好的扩展性。
针对海量数据的分析,天地伟业结合大数据分析技术更贴近实战业务的应用。
数据深层信息研判:
由于系统采集的数据量巨大,在已有数据的搜索和碰撞外,还需挖掘潜在的风险信息,一方面实现潜在作案车辆的数据分析和预警;另一方面为破案提供研判分析和有用数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08