京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据就在身边 游戏也能用到大数据_数据分析师考试
大数据其实核心不是大,而是全数据,是将你各种行为的数据汇总在一起,从而能通过数据看到你完整行为轨迹,进行分析。在日常生活中,比如买衣服,你看了什么衣服,试穿了什么衣服,你重复去买衣服,这些信息商家都是不知道的,而商家的建设就是要全,比如优衣库做的你去试衣服的时候会进行记录,比如很多商家做会员卡,也能起到收集这个信息的目的。
而一个日志建设比较完善的游戏,是可以看到几乎全部有价值的行为的,你做的每一件事都可以拿来分析,而大数据,正是靠这种数据的全,来达成有价值的分析。
2.但是,游戏行业目前能做的绝大多数据分析,其实跟大数据没有任何关系。
我做数据分析,和教数据分析的方法,是像游戏策划一样理解游戏,然后用excel分析。只要懂加减乘除,集合这些概念,最多用一点线性相关,和聚类分析。但是核心是懂游戏。
以前我自己用这套方法的时候还不确定是不是因为我太菜了所以只能用这套方法,后来自己招人建设数据分析中心的时候,面试了很多人,年薪30W在top端游公司的,年薪25W在著名手游公司的,年薪25W带一个3-5人团队的。他们都是用数据挖掘之类的方法做,但是谈到具体做过什么帮助游戏改进的案例,都讲不出什么。其中有一个我以前认识,多聊了两句,他也觉得自己用建模,挖掘这样的办法,适合在有大量游戏的公司,对所有游戏做一些通用的东西,起到一些帮助(这件事的关键是游戏项目组要有足够的数据意识,否则没法配合),而在单个游戏的改进上,确实起不到多大作用。
数据挖掘之类的方法在游戏项目中少有有效应用,核心原因还是单个游戏都太小,用不起很专业的。用数据挖掘最好的应该是电商这种行业,比如亚马逊,因为他们的分析是针对整个公司的,整个公司的销售额都会受到数据的影响,比如亚马逊。而游戏方面,单个游戏年收入5亿以上的才有几个?这些做到高收入的游戏,他们会觉得我不是靠数据做到今天的,我也没必要去投入做数据挖掘(毕竟这种游戏有那么多事情需要投入,动不动就百人团队)。所以针对单个游戏有效的大数据研究方法,目前还几乎没有。
3.数据挖掘目前在游戏行业能做什么?——流失预测
这是我看过唯一一个案例,是数据挖掘在游戏行业很好的应用,但潜力还没有被充分挖掘出来。我见过大公司做的最好的,能达到80%准确率:80%的流失用户被预测到了,80%被预测到的用户真的流失了。也见过能做到60-70%的。这种分析真的是大数据的思路,他不需要理解游戏,只要把足够多的数据放进去,就能预测流失。反倒是从策划角度经过规划的数据,基本是不可能准确预测流失的(面试到讲这条路的,就直接pass了。做过流失预测自己根本不知道准确率多少的也直接pass了)。
说潜力没有挖掘出来,因为这个分析的目的和传统游戏数据分析不同,不是改进游戏,而是运营干涉。发现这些用户快要流失,就想办法给他们好处,留住他们。但是大部分游戏的框架并不允许做这件事,而没有足够数据训练的游戏项目组,也很难配合起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03