
大数据就在身边 游戏也能用到大数据_数据分析师考试
大数据其实核心不是大,而是全数据,是将你各种行为的数据汇总在一起,从而能通过数据看到你完整行为轨迹,进行分析。在日常生活中,比如买衣服,你看了什么衣服,试穿了什么衣服,你重复去买衣服,这些信息商家都是不知道的,而商家的建设就是要全,比如优衣库做的你去试衣服的时候会进行记录,比如很多商家做会员卡,也能起到收集这个信息的目的。
而一个日志建设比较完善的游戏,是可以看到几乎全部有价值的行为的,你做的每一件事都可以拿来分析,而大数据,正是靠这种数据的全,来达成有价值的分析。
2.但是,游戏行业目前能做的绝大多数据分析,其实跟大数据没有任何关系。
我做数据分析,和教数据分析的方法,是像游戏策划一样理解游戏,然后用excel分析。只要懂加减乘除,集合这些概念,最多用一点线性相关,和聚类分析。但是核心是懂游戏。
以前我自己用这套方法的时候还不确定是不是因为我太菜了所以只能用这套方法,后来自己招人建设数据分析中心的时候,面试了很多人,年薪30W在top端游公司的,年薪25W在著名手游公司的,年薪25W带一个3-5人团队的。他们都是用数据挖掘之类的方法做,但是谈到具体做过什么帮助游戏改进的案例,都讲不出什么。其中有一个我以前认识,多聊了两句,他也觉得自己用建模,挖掘这样的办法,适合在有大量游戏的公司,对所有游戏做一些通用的东西,起到一些帮助(这件事的关键是游戏项目组要有足够的数据意识,否则没法配合),而在单个游戏的改进上,确实起不到多大作用。
数据挖掘之类的方法在游戏项目中少有有效应用,核心原因还是单个游戏都太小,用不起很专业的。用数据挖掘最好的应该是电商这种行业,比如亚马逊,因为他们的分析是针对整个公司的,整个公司的销售额都会受到数据的影响,比如亚马逊。而游戏方面,单个游戏年收入5亿以上的才有几个?这些做到高收入的游戏,他们会觉得我不是靠数据做到今天的,我也没必要去投入做数据挖掘(毕竟这种游戏有那么多事情需要投入,动不动就百人团队)。所以针对单个游戏有效的大数据研究方法,目前还几乎没有。
3.数据挖掘目前在游戏行业能做什么?——流失预测
这是我看过唯一一个案例,是数据挖掘在游戏行业很好的应用,但潜力还没有被充分挖掘出来。我见过大公司做的最好的,能达到80%准确率:80%的流失用户被预测到了,80%被预测到的用户真的流失了。也见过能做到60-70%的。这种分析真的是大数据的思路,他不需要理解游戏,只要把足够多的数据放进去,就能预测流失。反倒是从策划角度经过规划的数据,基本是不可能准确预测流失的(面试到讲这条路的,就直接pass了。做过流失预测自己根本不知道准确率多少的也直接pass了)。
说潜力没有挖掘出来,因为这个分析的目的和传统游戏数据分析不同,不是改进游戏,而是运营干涉。发现这些用户快要流失,就想办法给他们好处,留住他们。但是大部分游戏的框架并不允许做这件事,而没有足够数据训练的游戏项目组,也很难配合起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17