
大数据时代新闻业谋变 新闻面貌在变化_数据分析师
传媒业受到大数据时代的冲击,已经不是危言耸听。
据报道,美国新闻集团近日对旗下的道琼斯新闻出版部门进行重组。包括道琼斯通讯社、《华尔街日报》在内的新闻机构将经历近百人规模的裁员。与此同时,集团将增加数十个数字新闻的职位,包括社交媒体服务、读者数据分析等,将资源转移至数字媒体及核心报道领域。据悉,通过重组,道琼斯公司希望让新闻编辑室“彻底转型”,成为世界第一大数字新闻组织。
传统媒体裁员已不是什么新鲜事,关键在于裁员之后,是紧缩银根苟活,还是壮士断腕谋变。《华尔街日报》的选择是,拥抱大数据,转向数字市场寻求增长。
大数据时代,强调的是对大规模数据综合处理的能力。这意味着,传统媒体必须适应新的信息生产和传播方式,既能生产数据,也能对数据进行解读分析的综合处理,为受众提供个性化的新闻内容。
在中国,也有人在做相同的打算。6月4日,阿里巴巴投资12亿元入股上海文广集团旗下的第一财经,意图发挥双方在传媒与大数据领域的资源优势,打造具有全球影响力的新型数字化财经媒体与信息服务集团。
“希望打造中国的《华尔街日报》、彭博,发出真正代表世界这一面的声音。”马云毫不掩饰自己在大数据上的“野心”。
大数据在发力
大数据的力量,最直观地表现,在于对新闻采写这一核心领域的入侵。
机器人取代记者一度让传统媒体人胆寒,此前,美联社、《纽约时报》已经开始使用机器人撰写一些财经、体育类等程式化的稿件,因为这两个领域都涉及到大量波动性强的数据;而在新闻聚合阅读领域,精确的“算法”逐渐取代人工,不少公司甚至“没有一名编辑记者”。
当然,这并不意味着传统媒体人已经“被后浪拍到沙滩上”。大数据是传统媒体的竞争对手,也可以成为媒体的方法和工具。从“靠专家说话”到“靠数据说话”,大数据时代对媒体人专业能力的素养要求更上一层楼。
有效地“加工”数据,可以更接近事实的情状。在此基础上,通过数据“提纯”,进行深度解读和分析。而进一步的“淘金”,更能把埋没于海量数据中的珍贵内容呈现给受众。日前,苹果公司高调招聘编辑团队,便体现了大数据时代下人的价值。
大数据的力量,还体现在放大了受众的声音与价值。
反馈,曾是传统媒体的“硬伤”。但从社交媒体中收集到的众声喧哗,更充分地呈现出受众的意见和态度。更重要的是,大数据拓展了媒体用户分析的广度与深度,不仅整体地描绘出受众的面貌,更能具体地描绘出每一个用户的独特需求,在此基础上,媒体的个性化服务(如新闻推送、广告投放),也许有一天真的像一颗颗“魔弹”,击中用户的“痛点”。
新闻面貌在变化
面对大数据的考验,传统媒体站在十字路口。要转型,意味着对既有新闻生产运行体系的改造,意味着软硬件的投入;不转型,势必在大数据的大潮中被侵蚀或吞没。这些都考验着媒介管理者的视野和气魄。
新闻行业本身正在或深刻、或细微地发生变化,这些也昭示着传统媒体转型的方向。
一方面,新闻的内容正在发生变化。除了新近发生或正在发生的事实,传统媒体更需要突破时间的桎梏,主攻基于大数据的预测性新闻和由数据驱动的深度报道。
有学者认为,媒体要成立专门的部门,或者依靠与外部的合作,建立起一个数据积累与分析的常规机制。这意味着,未来的媒体对于既掌握数据分析和数据挖掘,又秉持专业新闻理念的融合性人才有广泛的需求。盲目投入搭建平台,忽视专业的管理、分析体系的搭建和人才的引进培养,这恰恰是不少媒体陷入的“大数据误区”。
另一方面,新闻的呈现方式也在发生变化。新闻图表作为一种形象的、可视化的方式,使新闻进入“读图时代”。
2014年,数据新闻《青岛中石化管道爆炸》获得亚洲出版业协会的卓越新闻奖,这是中国新闻史上首次由程序员斩获新闻奖。而随着HTML5的异军突起,数据新闻的表现形式愈发地多样化。从2009年开始,包括英国《卫报》、财新传媒在内的国内外媒体已先后组建了数据新闻团队,可视化新闻已经从“配角”变为“主角”,从“噱头”变为“看头”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22