京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朝阳大悦城利用数据分析成功转型
联商网特约专栏:有效的商户评价是商户管理的基础,信息部在租金销售矩阵的基础上加入了抽成、租售比与增长情况建立了一组分析模型,能够全面评价商户的租金贡献性,销售成长性,单店盈亏收益性,诚信合规性。
朝阳大悦城自2010年5月开业以来,积极探索,自主创新,利用数据分析成功地实现了转型。大悦城的成功理念是:传统经验+互联网思维=创新基因。
逆水行舟-朝阳大悦城生命力旺盛
在零售环境大改变的今天,当许多购物中心面临更多压力时,朝阳大悦城却表现出极其旺盛的生命力。2010年5月开业,2011年销售额突破10亿元,2012年销售额近14亿元,开业不足3年,便实现了盈利。2013年销售额突破21亿元,同比增长50%,客流超2100万,同比增长45%。其中,去年平均每家商户的年销售约为486万元,平均每平方米租赁面积的年销售贡献超过1.8万元。
慧眼识针-大数据成为主要推动力
朝阳大悦城的生命力何在?除了及时的业态调整和不断创新的营销活动等之外,其真正的内在的核心竞争力是高效的运营管理。在业态调整和招商规划过程中,大悦城一直重视的数据团队派上了用场。
作为2010年开业的购物中心,朝阳大悦城对大数据重视程度远超其他同类商场,其运营管理以大数据为基础来部署,所有的营销、招商、运营和活动推广,都围绕着大数据的分析报告来进行。
数据营销
朝阳大悦城开业时,正处于零售环境大改变的时期。电商的冲击下,传统的做法已经无法再满足需求,加上所处的地区商业氛围明显不足,开业初期面临很大压力。有压力就有动力;要生存,就要不断创新。
朝阳大悦城成立之初,就组建了一个数据团队。对传统零售行业而言,由于消费者进入商场的消费目的并不明确,加之所有购买行为在互联网不留下浏览痕迹,这就增加数据来源也成为数据分析团队关注的主要方面。2012年一年中,朝阳大悦城在商场的不同位置安装了将近200个客流监控设备,并通过Wi-Fi站点的登录情况获知客户的到店频率,通过与会员卡关联的优惠券得知哪些是受消费者欢迎的优惠产品。
朝阳大悦城的数据来源主要有三个,POS机系统、CRM系统及消费者调研。任何一笔收入都进入POS机系统,而CRM系统主要是与人关联,便于对客户进行研究。至于消费者调研,主要是海量的调研问卷及定期的小组座谈,深度访谈。
精准定位
通过对车流数据的采集分析,信息部发现,具备较高消费能力的驾车客户是朝阳大悦城的主要销售贡献者,而通过数据测算每部车带来的消费,客单超过700元。
在对大量数据研究的基础上,信息部分析出两个难题:一是在商户大力促销及活动充分宣传的基础上,预期客流与提袋率增长相对容易实现,但客单价的大幅增长较为困难;二是根据历史经验,单日销售冲高最大的动力来自于零售业态,而零售的集中释放于下午和晚上,上午时段的增长成为增量的关键时段。解决这两大难题必须从会员入手,想办法将在上午把最优质的会员吸引到店、刺激他们充分购物。
通过以上措施,在2013年店庆促销活动当天,会员销售出现峰值,比历史前高增长142%,据朝阳大悦城统计,当日销售总额、会员销售及坪效纷纷刷新历史新高,同比之前最高纪录增幅达46.9%、142.2%和45.3%。
高效管理
一个购物中心能否发展下去,一方面是看有无客源,一方面则在于有无足够的商户。毕竟,400多商户是朝阳大悦城的衣食父母。
有效的商户评价是商户管理的基础,信息部在租金销售矩阵的基础上加入了抽成、租售比与增长情况建立了一组分析模型,能够全面评价商户的租金贡献性,销售成长性,单店盈亏收益性,诚信合规性。
通过对品牌商户日常经营状况的监测结果,总结分析商户的顾客消费粘性与弹性、销售业绩增长与下滑的原因是数据团队的常规工作。
通过“多维度的大数据分析方法”,信息部对每一个商户在各个维度中的表现都进行了精准赋值。
协调运作
在对朝阳大悦城内部入驻商户通过数据分析而服务到位的同时,朝阳大悦城也在这一过程中打造着自身品牌价值。除此之外,还有大量非结构性辅助数据,与销售变化进行结构化分析,提前预测区域内客群结构的变化,分析客群的潜在需求,有针对性的进行自我营销,在消费客群心目中树立品牌,赢得口碑。
扬帆远航-创造未来新奇迹
在大数据已成为主流的大环境下,朝阳大悦城准确的把握了这一趋势,将传统经验与互联网思维相结合,走出了一条适合自己的阳光大道。沿着这一方向走下去,同时根据市场的变化进行适时的微调,综合管理,协调动作,相信朝阳大悦城必将创造出新的奇迹,让我们静观其变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23