
运营商的大数据问题出在哪_数据分析师
大数据已经从概念阶段上升到了实际使用阶段,越来越多的企业在通过大数据进行产品开发和营销指导,而通信运营商也开始对手里握着的金矿感兴趣。
不过,就如同以前很多业务开发一样,运营商掌握资源不假,但能否被资源变成产品却是未知数。在大数据应用中也是一样,运营商们仍在逡巡。
毫无疑问,运营商们手中的大数据无与伦比,甚至比互联网巨头们还要多,只是,要想把这些数据利用起来,却不如互联网公司容易。
运营商数据积累时间长但质量不佳
与互联网公司相比,运营商手中的数据更具有普遍性,甚至几乎囊括了所有的社会个体,可是由于运营商多年来经营业务相对集中,数据主要与通信消费行为领域相关,数据的范围相对较窄,在使用上受限很大。
此外,运营商们在开始积累数据的时候就不够长远眼光,因为数据数量过大,存储成本过高,运营商们曾经处理掉很多现在看来非常宝贵的数据,这些都不可能再生。
在数据结构上,运营商们原来存储数据主要用来作为向用户收钱的证据,对于与收钱关系不大的项目往往很少留存,这样就造成了很多数据缺陷,而这些缺失的数据对于大数据应用看起来更重要。
可以这样讲,阿里巴巴早就想好用数据来赚钱,所以处处留心收集和积累数据,当时机成熟的时候就会推出相应的数据产品,而运营商原来只想着用数据来算钱,到了需要用数据挣钱的时候就发现自己原来丢掉了西瓜。
场景不够,缺乏突破点,不知道大数据应用到何方
运营商们多年以卖卡收话费为生,与用户的接触主要是收取话费和做好服务,专业化非常强,对商业社会的各个方面了解缺乏,手中有数据也不知道应该用到什么地方。
互联网公司早已经脱离的原有的业务概念,纷纷交叉跨界,在面向社会的方方面面布局业务,这也就由此产生了对相关数据的现实需求。比如,阿里巴巴开始要做好电商,就需要分析卖家和卖家的行为数据,以便通过精确营销和广告等数据应用赚取收入,后来,为了堵住刷单、治理造假等行为漏洞,更是要通过数据分析来检测和治理,进入互联网金融领域之后,要进行信贷客户的信用评价和行业景气预测,电商大数据就更有了新用场。
与互联网公司全面布局不同,运营商的业务范围很窄,即便有些非通信业务,也几乎用不到通信行为数据等进行分析使用,所以,这些数据怎么用,自己首先都没有用处,也就难以发现在社会上的新应用前景和创新点,只能跟着互联网公司创新的步伐去模仿。
不做铺垫,不去造势,缺乏应用的成功案例
很多人都知道,百度与央视在春节期间推出的春运迁徙大数据,通过形象的数据展示全国人民回家过年前后的交通情况和旅游状态。蚂蚁金服更是在今年的6月6日提出建设中国信用日的概念,通过多个超市信用消费来获得了社会广泛关注。
这些活动看起来都具有公益性质,几乎不会有任何的收入,可是,正是通过类似的被大家普遍关注的社会事件,这些公司的大数据能力和产品得到了社会认可,为未来这些能力的变现提供了最好的社会启蒙教育。
在央视的节目中,原中国移动的董事长也介绍,中国移动在几年前就曾经通过大数据分析的方法为政府处置某地火车站滞留旅客问题发挥了关键性作用。但是,这些的事件也仅仅停留在公司内部的功劳簿上,公司因为种种原因都不会对外公开,社会上根本就不知道运营商能通过大数据做到哪些服务,更谈不上有更深入的项目合作。
数据不统一,难以发挥整体性的作用
由于历史和现实的原因,运营商的数据还存在自身缺陷,这些缺陷严重制约了大数据的使用,在机制和体制解决之前,都很难有本质上的改变。
首先,运营商是分级管理的,集团公司、省公司、市公司、县公司,逐级展开,特别是在省公司层面,各地运营几乎独立,各地的支撑系统都不是来自一家供应商,数据结构存在差异,且很难统一。
其次,即便数据可以通过系统建设实现全景视图,但在分级管理平台分隔的情况下,大数据应用时依然很难整体操作。数据不是分割的,但人是分隔的,在解决一些全局性问题的时候就无能为力。
还有,作为运营商,首先考虑的问题不是如何利用数据,而是要保护数据的安全。保护数据安全是所有拥有数据的企业和单位义不容辞的责任,可互联网公司更具有使用数据的冲动,也更敢于探索数据使用新场景,而运营商却将安全置于过重的地位,甚至为此畏首畏尾,自然浪费了好多资源。实际上,只要使用得当,完全可以做到兼顾安全与使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23