京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商的大数据问题出在哪_数据分析师
大数据已经从概念阶段上升到了实际使用阶段,越来越多的企业在通过大数据进行产品开发和营销指导,而通信运营商也开始对手里握着的金矿感兴趣。
不过,就如同以前很多业务开发一样,运营商掌握资源不假,但能否被资源变成产品却是未知数。在大数据应用中也是一样,运营商们仍在逡巡。
毫无疑问,运营商们手中的大数据无与伦比,甚至比互联网巨头们还要多,只是,要想把这些数据利用起来,却不如互联网公司容易。
运营商数据积累时间长但质量不佳
与互联网公司相比,运营商手中的数据更具有普遍性,甚至几乎囊括了所有的社会个体,可是由于运营商多年来经营业务相对集中,数据主要与通信消费行为领域相关,数据的范围相对较窄,在使用上受限很大。
此外,运营商们在开始积累数据的时候就不够长远眼光,因为数据数量过大,存储成本过高,运营商们曾经处理掉很多现在看来非常宝贵的数据,这些都不可能再生。
在数据结构上,运营商们原来存储数据主要用来作为向用户收钱的证据,对于与收钱关系不大的项目往往很少留存,这样就造成了很多数据缺陷,而这些缺失的数据对于大数据应用看起来更重要。
可以这样讲,阿里巴巴早就想好用数据来赚钱,所以处处留心收集和积累数据,当时机成熟的时候就会推出相应的数据产品,而运营商原来只想着用数据来算钱,到了需要用数据挣钱的时候就发现自己原来丢掉了西瓜。
场景不够,缺乏突破点,不知道大数据应用到何方
运营商们多年以卖卡收话费为生,与用户的接触主要是收取话费和做好服务,专业化非常强,对商业社会的各个方面了解缺乏,手中有数据也不知道应该用到什么地方。
互联网公司早已经脱离的原有的业务概念,纷纷交叉跨界,在面向社会的方方面面布局业务,这也就由此产生了对相关数据的现实需求。比如,阿里巴巴开始要做好电商,就需要分析卖家和卖家的行为数据,以便通过精确营销和广告等数据应用赚取收入,后来,为了堵住刷单、治理造假等行为漏洞,更是要通过数据分析来检测和治理,进入互联网金融领域之后,要进行信贷客户的信用评价和行业景气预测,电商大数据就更有了新用场。
与互联网公司全面布局不同,运营商的业务范围很窄,即便有些非通信业务,也几乎用不到通信行为数据等进行分析使用,所以,这些数据怎么用,自己首先都没有用处,也就难以发现在社会上的新应用前景和创新点,只能跟着互联网公司创新的步伐去模仿。
不做铺垫,不去造势,缺乏应用的成功案例
很多人都知道,百度与央视在春节期间推出的春运迁徙大数据,通过形象的数据展示全国人民回家过年前后的交通情况和旅游状态。蚂蚁金服更是在今年的6月6日提出建设中国信用日的概念,通过多个超市信用消费来获得了社会广泛关注。
这些活动看起来都具有公益性质,几乎不会有任何的收入,可是,正是通过类似的被大家普遍关注的社会事件,这些公司的大数据能力和产品得到了社会认可,为未来这些能力的变现提供了最好的社会启蒙教育。
在央视的节目中,原中国移动的董事长也介绍,中国移动在几年前就曾经通过大数据分析的方法为政府处置某地火车站滞留旅客问题发挥了关键性作用。但是,这些的事件也仅仅停留在公司内部的功劳簿上,公司因为种种原因都不会对外公开,社会上根本就不知道运营商能通过大数据做到哪些服务,更谈不上有更深入的项目合作。
数据不统一,难以发挥整体性的作用
由于历史和现实的原因,运营商的数据还存在自身缺陷,这些缺陷严重制约了大数据的使用,在机制和体制解决之前,都很难有本质上的改变。
首先,运营商是分级管理的,集团公司、省公司、市公司、县公司,逐级展开,特别是在省公司层面,各地运营几乎独立,各地的支撑系统都不是来自一家供应商,数据结构存在差异,且很难统一。
其次,即便数据可以通过系统建设实现全景视图,但在分级管理平台分隔的情况下,大数据应用时依然很难整体操作。数据不是分割的,但人是分隔的,在解决一些全局性问题的时候就无能为力。
还有,作为运营商,首先考虑的问题不是如何利用数据,而是要保护数据的安全。保护数据安全是所有拥有数据的企业和单位义不容辞的责任,可互联网公司更具有使用数据的冲动,也更敢于探索数据使用新场景,而运营商却将安全置于过重的地位,甚至为此畏首畏尾,自然浪费了好多资源。实际上,只要使用得当,完全可以做到兼顾安全与使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11