
挖掘大数据中的商业价值_数据分析师
“我要怒放的生命!”凡客诚品新一季的户外广告再次袭来。好声音人气学员助阵,加上标配的“凡客体”广告语,凡客诚品新一季的广告几乎一夜之间占据了北京的核心商业地段。人们感叹善于市场营销的凡客诚品,再一次将传播诉求直击目标受众心理。对目标受众的精准传播诉求,得益于凡客诚品对目标受众心理的准确分析,而这一切还得归功于凡客诚品在IT架构上的持续投资,搭建灵活、智能的数据平台解决方案。
得益于中国互联网的迅猛发展和凡客诚品成功的营销,互联网用户和中国年轻一代职场人士开始接受网络服装、家居订购这样一种全新的快时尚消费模式,凡客诚品的销售量在短时间内实现了大规模的增长。作为核心业务支撑的 IT系统面临着订单量激增带来的数据分析及存储问题,以及仓储的效率与差错率等问题。采用微软Microsoft SQL Server搭建数据平台,让凡客诚品在对用户海量数据分析管理的同时,可以灵活处理业务订单,解决仓储效率与差错率等问题。选择用微软数据平台架构,是凡客诚品业务发展中IT投资的必然选择。
“对于凡客诚品这个以 IT 作为主要生产力的企业来说,IT 的稳定性、可用性、安全性、可扩展性和成本都至关重要,微软灵活的数据平台解决方案以及完善的服务支持体系,为凡客诚品不断地应对业务增长与变化,持续盈利提供了有力的保障。” 凡客诚品(北京)科技有限公司高级副总裁滕崧说。
凡客诚品意识到,高速激增的业务,给企业IT 搭建提出了更高的要求,企业IT要成为最核心的支持力量,IT投资只有更合理科学,贴合企业实际业务的发展需求,才能挖掘更多商业价值。
同样意识到大数据中蕴藏着商业价值的还有美特斯邦威。
作为立志成为中国休闲服市场的领导品牌,为消费者提供个性时尚的产品,美特斯邦威对大数据时代下如何构建属于自己的数据库平台,有着清醒的目标:利用大数据在线上线下实现零售业务的增长。
为实现这一目标,美特斯邦威与微软合作,采用Microsoft SQL Server搭建数据平台,通过线上线下消费者行为数据分析,挖掘不同消费渠道人群需求,并提供新的数据洞察力以实现对目标消费者的精准营销。借助Microsoft SQL Server灵活、智能的数据分析功能,美特斯邦威可以做到掌握客户店内走动情况以及与商品的互动,将丰富的输入数据与交易记录相结合开展实验,以便指导销售哪些商品、怎样摆放货品以及如何以及何时调整售价与优化库存。这种从消费者行为入手的数据分析,使得美特斯邦威能从中挖掘出更多的商业价值。
作为整合了高科技产业与传统旅行业的携程网,对大数据时代下企业数据平台的建设有着更深地理解。
"面对竞争激烈和复杂多变的经济环境,携程需要更懂用户和市场的需求。我们每天都在通过门户站点收集着海量的业务数据,如何快捷地从这些数据当中发现潜在的商业机会、开发更符合用户和市场需求的产品和服务,是携程发展过程中面临的一大挑战。“ 携程旅行网技术副总裁江浩毫不掩饰对数据商业价值的青睐。要解决携程所面临的挑战,搭建灵活、智能的数据平台是必然途径,携程将目光锁定在Microsoft SQL Server 2012。
“Microsoft SQL Server 2012 为携程提供了基础数据平台支持和增强的数据功能,使得我们在解读自身需求和市场需求的过程中总是快人一步。“江浩认为Microsoft SQL Server 2012 为携程提供面向云计算时代的商业智能和数据仓库平台,这让携程在激烈市场竞争环境中更具竞争力。
在当今的大数据时代,“得数据者得天下“已经成为企业共识。如何做到对业务数据灵活和智能化的分析和管理,是许多企业必须关注的问题,对互联网电商企业尤为重要。谁能有效地管理和利用数据, 这不仅关系到未来企业业务是否能平稳持续增长,还关系到企业能否从海量的数据中挖掘出更多的商业价值,这关系到企业的生死。
现在,企业是时候该考虑如何对这些大数据进行商业价值挖掘了。如何合理科学的对IT加以投资,部署适应企业自身业务发展需求的数据平台。显然,灵活、智能的微软数据架构平台无疑是最好的选择
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15