京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云端数据加密的七大标准_数据分析师考试
由于可以通过前所未有的众多方式接入企业领域,这使得信息安全专业人员求助于众多数据保护方法。几十年来,加密一向是信息安全工具库当中的主要武器,但是面对我们如今亲眼目睹的数字化转变,加密需要重新评估。
传统方式的加密是一项耗费大量资源的工作,它带来的难题常常几乎与它解决的难题一样多。一些目光长远的企业期望利用现代化技术,有机会重新定义其数据保护策略,同时在这个过程中将安全由一项必要的保护措施转变成一个业务推动因素。为了做到这一点,必须考虑下列七大加密标准。
第一个标准:酌情处理。
是时候考虑我们的老朋友:80/20法则了。问一下自己:贵企业里面有多少比例的数据是真正的敏感数据?贵公司的信息绝大多数很有可能出现在时代广场的广告牌上,不过造成的影响极小;某人生日派对的策划文档根本不需要予以加密。
无所不在的加密会干扰应用程序的功能,尤其是报告和搜索功能,这个问题在如今高度整合的云模式下显得尤为复杂。一种酌情处理的、有所选择的加密方法可确保敏感数据的安全,又不妨碍新兴技术具有的好处。
第二个标准:符合企业安全政策。
你在制定指导准则以确定加密何时有必要时,不需要从头开始。可以参照企业内部现有的安全政策,就可以评估哪些敏感信息可能存在于贵企业环境中,并利用这些信息,为自己的加密策略奠定基础。另外别忘了考虑与贵公司有关的内外合规性法规。
第三个标准:高度自动化的加密。
一旦就哪些情况下需要加密达成了共识,接下来可以采取实际行动了。充分利用安全技术,找出企业里面的敏感内容,并使用加密作为针对风险特别大的事件的一种补救工具。如果让这个过程实现自动化,安全团队势必能够以一种智能化、内容感知的方式,迅速减小数据不恰当泄露的可能性,并且给企业安全状况带来实实在在的影响。
第四个标准:考虑到人员因素。
安全项目如今比以往更加需要将最终用户的需要考虑进来。如果企业的安全计划妨碍典型的用户工作流程,或者侵扰性太强(软件代理不值得考虑),员工就会规避企业系统,通过随手可得的软件即服务(SaaS)应用程序,利用他们可以获得的众多替代方法;如果需要的话,还有机会完全绕过企业网络,这归因于自带设备(BYOD)潮流。
第五个标准:云无处不在。
现在的问题不再是企业组织何时采用云技术,而是如何采用。你上一回跑到办公用品商店购买盒装软件是啥时候了?说实话,我也不记得了。
与云端加密有关的挑战归因于三大现象:云端数据急剧增加,现代用户的预期要求比较高,以及保留原生云功能具有的重要性。从2014年到2015年,我们目睹存储在公有云应用程序中的文件数量增长了10倍。加密这么多海量的数据就好比用气泡衬垫将整个房子包起来,而不是关注那些要紧的易损物品。
与此同时,安全负责人开始认识到用户个人上班时和下班后都在充分利用云技术,带来了一种更高效、更合作的移动生活方式。用户们在访问传统企业网络内外的SaaS应用程序。最后,正如我们已经讨论的那样,一刀切的加密会在云端带来复杂性,具体表现为影响搜索和报告功能。
第六个标准:自适应架构。
因而,现代的加密策略必须与许多企业奉行的云优先理念相一致,以便为员工队伍提供最出色的工具。为此,需要重新规划流量路由和重新配置网络的依赖硬件的加密网关或解决方案显得缺乏效率、并不理想。
与传统预置型加密模式有关的网络设备带来了单一故障点,并且缺乏可扩展性、部署简易性以及已成为新标准的移动/云兼容性。另外,它们无力应对从不在企业网络上传送的日益增加的云到云流量;也就是说,文件同步和共享应用程序与客户关系管理(CRM)整合起来。
第七个标准:加密只是个开头。
虽然加密具有重大的安全价值,但安全专业人员必须避免完全依赖加密这一诱惑。除了加密策略外,还要辅以另外的最佳实践,才能获得一项整体的安全计划。
别将用户当作对手,而是让他们变成安全代言人和搭档。经常与用户进行交流,确保他们的需求得到了解,同时创造机会以传达贵企业安全策略的目标和价值。你甚至可以让用户将某人的社会保障号码从那份生日派对策划文档中隐掉。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26