
让数据发挥价值 金融保险需建数据生态体系
数据是保险业经营、管理和决策的重要基础,数据综合利用是近年来保险行业信息化建设的核心。保险业持续发展的数据业务建设提速,给保险行业运营中心对数据进行集中处理提出了更高的要求,这也成为保险公司发展规划中的重要内容。
大信息量亟需数据保护
据有关数据,近五年间,中国保险业信息化整体投资规模的年复合增长率大约为10.53%.目前,大部分的保险公司已经实现业务数据大集中,建立起各自的大后援。然而,在这片看上去宁静清新的风景后面,却有数百条繁忙的热线电话和一刻也不能停止的数据处理中心。如何充分利用数据大集中的成果,建立完善科学的保险数据体系,逐步强化数据挖掘和数据资产利用的能力,准确掌握保险市场需求变化,改善客户服务质量,推进保险创新发展,促进保险业增长方式转变。
如何通过信息化建设促进经营现代化和管理精细化,降低保险经营成本,通过信息化建设促进保险电子商务、跨地区保险服务等新型业务模式,加快保险创新。如何通过信息化建设加强前台服务资源整合和后台资源集中,促进资源利用高效化,有效支持保险综合经营和集团化发展的需要。这三个如何都是保险行业目前亟需要解决的问题。
价值保护闪存助力
数据价值对于金融保险行业至关重要,HDS副总裁兼中国大陆及台湾地区总经理庄国光曾接受记者采访时就表示:“金融行业客户如今对存储数据的要求有着独特的看法,客户多以价值创造为导向,成本意识强,他们如今更注重数据来为其提高价值创造的能力。”
确实,目前来看,中国平安、中国人保、中国人寿等大型保险集团均已建立或正在建立自己的大型后援中心,对数据保护建设的投入明显加快。中国平安早在2003年就启动了后援管理中心的立项工作,是国内最早采用后援集中管理模式的金融机构,进一步发挥数据对其发展的引领和支撑作用,是中国平安面临的一项重要而艰巨的任务。这也是中国平安保险(集团)股份有限公司决定部署HDS企业级加速闪存模块(HDS Accelerated Flash,简称HAF)的分层存储解决方案实现了核心结构化的数据生态体系的原因。
管理+可控是关键
庄国光表示:“闪存存储系统最大优势是提供远超磁盘存储系统的性能,HDS的分层存储方案在提供了强大的存储性能基础支持,又提供了业界企业级存储所具有的高可靠性和丰富的管理功能性,而且混合部署方式可以大大提升存储服务总体性价比,分层解决方案以相同的成本提供不同业务需要的性能,这非常适应了当前金融行业OLTP应用场景存储服务持续发展的要求。”
HAF是HDS针对企业级应用设计的闪存技术,配合存储系统上的HAF闪存访问加速软件和HDS Dynamic Tiering动态分层软件,能优化对闪存模块的访问,实现自动化的数据和文件分层,让大容量低功耗的闪存盘真正融入基础架构中。
方案优势分析
为了应对在业务高峰期会出现爆炸性的访问增长,HDS在不改变平安现阶段的存储体系架构的同时,最大化地发挥闪存优势,建立了高性能、高扩展和高可靠的分层数据存储平台。HAF在设计时规避了传统SSD的一些缺陷,在持续性能方面,它是传统MLC SSD的五倍;在单位容量和存储密度方面,HAF是传统SSD的四倍,可以有效降低闪存的单位成本。同时,HAF解决了很多闪存固有的生命周期和访问性能下降问题:
首先,普通的 MLC寿命有限,在重复擦写一段时间之后闪存颗粒和闪存控制器都会无法使用。HAF利用专有闪存控制器,可以保证数据被写到更多的芯片上,减少对少数闪存芯片进行大量擦写的操作;另外,HAF还增加冗余的闪存芯片,以替换磨损较严重的芯片。
其次,闪存颗粒在重复擦写一定次数之后性能会骤降,这个缺点使得闪存很难在企业级存储中进行大规模的推广。HAF的闪存控制器可以有效的对多余空间进行回收,芯片数据的整理以及数据的在线压缩等等;此外,HAF增加闪存总线和eMLC的芯片,32条闪存总线和128个eMLC闪存芯片都有利于减少对单一闪存芯片进行过多的擦写,而且可以提升闪存的读写性能。
另外,借助HDS加速软件Flash acceleration和动态分层软件HDT (HDS Dynamic Tiering),能够更充分发挥HAF的性能。尤其HDT利用调用最频繁的分页对最高存储层进行完全分配,可以最大限度提高其利用率,从而提供最佳性能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22