京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让数据发挥价值 金融保险需建数据生态体系
数据是保险业经营、管理和决策的重要基础,数据综合利用是近年来保险行业信息化建设的核心。保险业持续发展的数据业务建设提速,给保险行业运营中心对数据进行集中处理提出了更高的要求,这也成为保险公司发展规划中的重要内容。
大信息量亟需数据保护
据有关数据,近五年间,中国保险业信息化整体投资规模的年复合增长率大约为10.53%.目前,大部分的保险公司已经实现业务数据大集中,建立起各自的大后援。然而,在这片看上去宁静清新的风景后面,却有数百条繁忙的热线电话和一刻也不能停止的数据处理中心。如何充分利用数据大集中的成果,建立完善科学的保险数据体系,逐步强化数据挖掘和数据资产利用的能力,准确掌握保险市场需求变化,改善客户服务质量,推进保险创新发展,促进保险业增长方式转变。
如何通过信息化建设促进经营现代化和管理精细化,降低保险经营成本,通过信息化建设促进保险电子商务、跨地区保险服务等新型业务模式,加快保险创新。如何通过信息化建设加强前台服务资源整合和后台资源集中,促进资源利用高效化,有效支持保险综合经营和集团化发展的需要。这三个如何都是保险行业目前亟需要解决的问题。
价值保护闪存助力
数据价值对于金融保险行业至关重要,HDS副总裁兼中国大陆及台湾地区总经理庄国光曾接受记者采访时就表示:“金融行业客户如今对存储数据的要求有着独特的看法,客户多以价值创造为导向,成本意识强,他们如今更注重数据来为其提高价值创造的能力。”
确实,目前来看,中国平安、中国人保、中国人寿等大型保险集团均已建立或正在建立自己的大型后援中心,对数据保护建设的投入明显加快。中国平安早在2003年就启动了后援管理中心的立项工作,是国内最早采用后援集中管理模式的金融机构,进一步发挥数据对其发展的引领和支撑作用,是中国平安面临的一项重要而艰巨的任务。这也是中国平安保险(集团)股份有限公司决定部署HDS企业级加速闪存模块(HDS Accelerated Flash,简称HAF)的分层存储解决方案实现了核心结构化的数据生态体系的原因。
管理+可控是关键
庄国光表示:“闪存存储系统最大优势是提供远超磁盘存储系统的性能,HDS的分层存储方案在提供了强大的存储性能基础支持,又提供了业界企业级存储所具有的高可靠性和丰富的管理功能性,而且混合部署方式可以大大提升存储服务总体性价比,分层解决方案以相同的成本提供不同业务需要的性能,这非常适应了当前金融行业OLTP应用场景存储服务持续发展的要求。”
HAF是HDS针对企业级应用设计的闪存技术,配合存储系统上的HAF闪存访问加速软件和HDS Dynamic Tiering动态分层软件,能优化对闪存模块的访问,实现自动化的数据和文件分层,让大容量低功耗的闪存盘真正融入基础架构中。
方案优势分析
为了应对在业务高峰期会出现爆炸性的访问增长,HDS在不改变平安现阶段的存储体系架构的同时,最大化地发挥闪存优势,建立了高性能、高扩展和高可靠的分层数据存储平台。HAF在设计时规避了传统SSD的一些缺陷,在持续性能方面,它是传统MLC SSD的五倍;在单位容量和存储密度方面,HAF是传统SSD的四倍,可以有效降低闪存的单位成本。同时,HAF解决了很多闪存固有的生命周期和访问性能下降问题:
首先,普通的 MLC寿命有限,在重复擦写一段时间之后闪存颗粒和闪存控制器都会无法使用。HAF利用专有闪存控制器,可以保证数据被写到更多的芯片上,减少对少数闪存芯片进行大量擦写的操作;另外,HAF还增加冗余的闪存芯片,以替换磨损较严重的芯片。
其次,闪存颗粒在重复擦写一定次数之后性能会骤降,这个缺点使得闪存很难在企业级存储中进行大规模的推广。HAF的闪存控制器可以有效的对多余空间进行回收,芯片数据的整理以及数据的在线压缩等等;此外,HAF增加闪存总线和eMLC的芯片,32条闪存总线和128个eMLC闪存芯片都有利于减少对单一闪存芯片进行过多的擦写,而且可以提升闪存的读写性能。
另外,借助HDS加速软件Flash acceleration和动态分层软件HDT (HDS Dynamic Tiering),能够更充分发挥HAF的性能。尤其HDT利用调用最频繁的分页对最高存储层进行完全分配,可以最大限度提高其利用率,从而提供最佳性能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08