
移动互联网和大数据将带来“新财富鸿沟”
在人类历史上,每一次重大的技术革 命或商业模式革 命,都推动了人类社会前行。但与此同时,也带来人类不同族群之间的力量失衡和财富失衡,总有一部分族群加快了发展速度,掌控了更多的财富,也有一部分族群被甩在后面。
最佳管理智囊档案
在18世纪下半叶,随着蒸汽机的发明,欧洲开始进入了工业文明时代,而此时亚洲等许多地区还处在农耕文明时代,两者之间的财富鸿沟日渐明显。从此时开始,全球的财富中心开始向西方转移。
在20世纪初,随着股票交易制度及相关制度的完善,纽约开始成为全球第一大金融中心,纽约证券交易所、华尔街、摩根已经开始成为当代金融业的标志。在这一轮的金融业革 命之后,也同样拉开了美国和欧洲的财富鸿沟。自纽约成为世界金融体系的太阳之后,包括伦敦在内的世界其他金融市场,从此成为围绕着这个太阳旋转的行星。
在20世纪下半叶,随着在电子、通讯、半导体、软件等方面的大量创新涌现,硅谷开始成为全球信息产业的圣地,成为全球信息产业当之无愧的领导者。在这一轮信息技术革 命之后,美国与亚洲等其它地区的财富鸿沟进一步拉大,随着美国技术源源不断的出口全球,财富和权力进一步集中到西方。
移动互联网和大数据时代的到来,事实上也是一场技术革 命与商业模式革 命,与前面的历史类似,这场革 命同样会拉大不同族群之间的财富鸿沟。
首先,在不同国家之间,在全球移动互联网和大数据体系中所处位置是不同的,比拼的是谁更接近生态体系的基石位置,从而能真正把握住未来发展的命脉,包括手机操作系统、大数据底层平台、开源软硬件平台、大规模社交平台、电子商务交易平台等。现在看来,这些主流平台极有可能集中于少数几个国家之间。互联网是没有国界的,但互联网企业是有国界的,这样集中于少数国家的技术、平台与数据,将拉大不同国家之间的财富鸿沟,甚至形成数字化的垄断霸权。
其次,以中国为例,中心城市与中小城镇的数字化差距也将日渐明显。从城市竞争的角度看,中心城市将占据核心数据资源与核心平台资源,对于商机、人才、知识具有垄断性控制力,是中小城镇无法比拟的。中心城市对于未来移动互联网和大数据的运用将愈发娴熟,使其不断提升城市竞争力。而中小城镇将长期徘徊在这一轮新技术革 命的边缘处。这样使得财富鸿沟进一步拉大,大型城市就像一个黑洞一样,源源不断地把发展中的财富吸附进来。
第三,在不同行业之间,可以发现,如果说以往,行业界限泾渭分明,各有各的财富空间。但现在则不同,以阿里巴巴、腾讯等企业为代表的互联网业,正像“站在门口的野蛮人”一样,冲进了传统行业的领地,可以看到,传媒、出版、零售、教育、交通、旅游、影音、IT等诸多行业都面临价值被互联网掠夺的风险。其中的要点在于互联网公司掌握了用户资源和行为数据,纷纷搭建了自己的云计算平台和大数据平台,比传统行业更懂它们的用户,定价更低,服务更好,这将自然造成不同行业之间的财富鸿沟。
第四,在不同受教育人群之间,是否善于运用移动互联网或大数据的优势,这一点将构成不同人群职业发展的显著差异。移动互联网和大数据既是新技术、新应用,同时也是新思维、新观念,移动互联网所蕴含的“在线”、“连接”的观念极大改善了人与社会资源的配置,大数据所蕴含的“相关性”“规律性”的观念将增强人的洞察力。因此,未来人的职场竞争,无论从事什么行业,在很大程度上比拼的是是否形成了新观念,善用新工具。不同的理念和不同的学习能力,将拉大不同人群之间的财富鸿沟。
移动互联网和大数据在推动社会发展的同时,也极有可能带来新的新财富鸿沟。效率并不必然带来公平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16