
Big Data大数据重塑营销2_数据分析师
大数据难题:超越技术
当然,从大数据的定义中就可以看出来,大数据营销首先面临的是技术难题。但实际情况是,真正启动大数据营销,你面临的不仅仅是技术和工具问题,更重要的是要转变组织架构和思维,来真正地挖掘那座数据金矿。
1.确定你的目标和标准。
把大数据这个概念扔掉,而是非常专注在你的衡量标准上。你必须弄清楚你到底想从大数据中得到什么,否则你就要花费大量的时间来分析数据。你需要的是,能够帮助解决问题的行为洞察,而不是试图研究每一个能够得到的信息。比如:分析你的消费者线上分享趋势,对你的业务有帮助吗?你的品牌体积是最重要的参数吗?
再强调一遍,大数据的资源太丰富,如果你没有明确的目标,你就算没有走入迷途至少会觉得非常迷茫。因此,首先,要定义你的价值数据标准,之后再使用那些能够解决特定领域问题的工具。
——Tim Devane,技术公司Bit.ly业务发展和销售总监
2.建设技术人才。
拥抱大数据之前,首先团队要到位。分析技能非常重要。你的营销团队要能够非常自如地玩转数据。很多人认为社交媒体营销人是个十分有趣的工作,其实只是个艰苦的工作。它非常注重数据、衡量标准和数据可视化等问题。要成功,首先要确保你的员工已经接受过技能培训,了解如何最大化利用大数据的潜力。当然回报也是非常丰厚的。
——Perry Drake,纽约大学助理教授
第一步是要将原先创意人员和统计人员之间的藩篱打破,让他们以同样的节奏,就同一个问题一起合作,融合为一支队伍,彼此学习。然而,研究公司Gartner曾经提到过,使用大数据的必备能力,是和那些信息技术行业中所需要的能力不同的,它更偏重框架的整合能力、提出正确问题和让公司所有部分一起工作的能力。很明显,你既需要统计人员,也需要创意人员,大数据是他们共有的天地。
——Marshall Sponder,Social Media Analytics:Effective Tools for Building,Interpreting,and Using Metrics一书作者
3.解决碎片化问题。
企业启动大数据营销一个最重要的挑战,是数据的碎片化。许多公司组织中,数据都散落在互不连通的数据库中,而且相应的数据技术也都存在于不同部门中,如何将这些数据库打通,并且实现技术共享,才是能够最大化大数据价值的关键。
——Graham Oakes,技术咨询师、博客作者
4.展现你的价值。
你只有能过展示数据带来的价值你才能够得到资源。营销者需要利用衡量标准来建立他们的可信度。没有这个,营销将会被看做一个花钱中心——但是当CMO们可以利用分析来将营销动作和硬性标准如年利润联系起来,他们就能建立自己的威信和赢得尊重,并在预算中占得一席之地。
——Jon Miller,金融服务公司Marketo营销副总裁
大数据,我们能做些什么?
大数据在国内的热度,仅从一个月内数场大数据主题会议举办的热度就可见一斑。
正如前文所述,数据分析能力的提升给营销带来的前景十分诱人;但同时反应出的是,数据以及如何利用数据一直都是营销圈中共同的难题,尤其在数字媒体兴起之后。
首先面临的是效果衡量标准,即使对于2011年宣布全面转向社交媒体的宝洁,这依然是个问题,“(社交媒体)效果现在无法确切衡量,投入必然会谨慎”,宝洁大中华区品牌运营副总裁靖捷告诉《成功营销》记者。浩腾媒体数据总监贾雯也表示“之前的数字营销效果更多的是数字展示,而不是效果分析。”
媒体的整合、受众的精准也都有赖于数据处理能力的提升来得到更好的答案;而在这些之外,我们可能会发现如何利用数据不只是个技术问题,而是理念以及公司架构等“软性”层面的问题,“国内和国外差距的不是技术,而是人,是对数据的重视程度”——从事数据挖掘20多年的支付宝首席商业智能官车品觉跟本记者分享其经验感悟。
我们从广告主、平台、代理机构等多方角色进行采访或者资料编辑,来了解和呈现不同视角中大数据的重要性和进展。广告主中,银行以及零售商一直是数据挖掘的先驱者,他们的动作对行业有着较大的借鉴价值;作为拥有巨大流量的平台,如何能够更好地提供其对于数据的洞见是其发挥流量优势的主要表现之一;而在业务和人才能力上与数据最为贴近的第三方机构,纵观他们产品和服务的水平几乎可以呈现国内大数据的整体进展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01