
关于大数据服务上云的思考_数据分析师考试
混合云市场,2014年,IBM以综合的IT能力,收入70亿夺魁。云计算喊了这么多年,不知不觉已经变成了几十亿美元的大生意。云计算时代真的来了!
最近看到亚马逊第一次单独公布AWS财报,一年营收57亿美元,市场份额占比第一。混合云市场,2014年,IBM以综合的IT能力,收入70亿夺魁。云计算喊了这么多年,不知不觉已经变成了几十亿美元的大生意。云计算时代真的来了!
今天不是来说AWS的,说说大数据怎么上云的一些思考:
1、首先说说,大数据和云的关系,云是一种网络形态的概念,是继1980年代大型计算机到客户端-服务器的大转变之后的又一种巨变。云计算(Cloud Computing)是分布式计算(Distributed Computing)、并行计算(Parallel Computing)、效用计算(Utility Computing)、网络存储(Network Storage Technologies)、虚拟化(Virtualization)、负载均衡(Load Balance)、热备份冗余(High Available)等传统计算机和网络技术发展融合的产物。除了技术上的融合形态,更重要的体现了一种服务模式的一种融合和改变,对于云来说,大数据只是上面的一种服务,和其他的web服务,数据库服务没有区别。
2、I层(云的基础设施)现在业界最火的方案是OpenStack,OpenStack是一个由NASA(美国国家航空航天局)和Rackspace合作研发并发起的,以Apache许可证授权的自由软件和开放源代码项目。
OpenStack是一个开源的云计算管理平台项目,由几个主要的组件组合起来完成具体工作。OpenStack支持几乎所有类型的云环境,项目目标是提供实施简单、可大规模扩展、丰富、标准统一的云计算管理平台。OpenStack通过各种互补的服务提供了基础设施即服务(IaaS)的解决方案,每个服务提供API以进行集成。
OpenStack云计算平台,帮助服务商和企业内部实现类似于 Amazon EC2 和 S3 的云基础架构服务(Infrastructure as a Service, IaaS)。OpenStack 包含两个主要模块:Nova 和 Swift,前者是 NASA 开发的虚拟服务器部署和业务计算模块;后者是 Rackspace开发的分布式云存储模块,两者可以一起用,也可以分开单独用。OpenStack除了有 Rackspace 和 NASA 的大力支持外,还有包括 Dell、Citrix、 Cisco、 Canonical等重量级公司的贡献和支持,发展速度非常快。
在云环境中,Openstack解决了I层的问题,所有物理资源的管理和分配由I层来负责。
3、正是因为I层将资源和存储进行了虚拟化然后对上提供,大数据上云最大的两个问题是资源管理和数据存储。同时大数据又是重载的业务,对资源的需求非常高,因此需要大数据和openstack充分配合,大数据上云才能运行的好。
4、传统数据中心,大数据集群的资源管理和分配目前主要的方案是mesos/YARN.
关于大数据服务上云的思考
从上图大家可以看出,Mesos/YARN来对物理资源直接进行管理,然后分配给上层的组件使用。 资源隔离方面,docker方案发展很快,所以又有YARN和kubernets结合的方案。PaaS作为一个服务直接架在YARN上。在没有直接I层能力的情况下,应该是非常合适的一种的过渡方案,但是如果YARN管理的不是直接的物理资源,而是I层虚拟出来的VM/docker之类,mesos/YARN和I层的能力就出现了一定的重合和冲突,这个时候mesos/YARN应该把VM/Docker级资源管理和分配的能力释放给I层,聚焦于job级资源的分配和调度。此时PaaS在架构在YARN/MESOS上就非常多余。
5、对于存储存在同样的问题,HDFS是对物理硬盘的直接抽象成对象存储,并提供3份冗余来保障数据的可靠性。云上的I层对存储通常也会抽象,并且进行一定的冗余,来动态分配给上层应用。HDFS直接架在I层上,就存在反复冗余的问题。同时大数据的核心是对数据的处理,数据存储的位置对性能起到非常关键的作用,多层反复虚拟化之后,数据存储的不确定性,性能损耗非常大。因此I层最好将物理硬盘直接提供出来给大数据服务可见,让用数据的人直接管理数据效率最高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29