
大数据公司ZestFinanceC轮获2000万美元投资
ZestFinance是前谷歌首席信息官及工程副总裁Douglas Merrill和Capital One(美国第一资本投资国际集团)公司前主管Shawn Budde的心血结晶。该公司为放款者提供承保模式,旨在为那些个人信用不良或者不满足传统银行贷款资格的个人提供服务。
ZestFinance,是一家位于洛杉矶的初创公司,他们使用机器学习的方式来评估个人贷款的信贷风险指数。近日该公司获得了2000万美元的C轮风险融资,该轮融资由Peter Thiel领投,Northgate Capital、Matrix Partners、Kensington Capital Holdings、Eastward Capital Partners以及Lightspeed Venture Partners也进行了参投。
ZestFinance的模型
在ZestFinance的分析模型中大约有70000个变量,然后使用一些机器学习算法进行分析。一旦机器承接了大部分的工作,那么人类只需要根据分析结果进行一些逻辑分析和判断。总之,ZestFinance声称这种方式比传统的衡量模型提升了60%的效率,更重要的是,还款率也比传统的方法高出了90%。
在2012年1月份,ZestFinance在B轮融资中就获得了7300万美元的风险资金,其中包括2300万美元的股权融资和5000万美元的债务融资。
在2012年, Merrill在参加GigaOM的Structure:Data大会时就表示:“大数据和人类的艺术性的结合才是Hilbert(ZestFinance当时最新的模型,取自统计学家David Hilbert之名)的潜在价值。”
这是因为,虽然机器在寻找关系和模型时表现出强大的能力,但是它们却不善于根据语境来进行推论或者去除那些毫不相干的内容。Merrill曾解释道,例如人类可以基于温度来教机器判断是下雨还是下雪,但是很多机器学习并没有任何意义。就像机器学习了-1度的温度是低于零度,但是50度和51度对它而言并没有太大的区别,而机器真正需要学习的是,温度是否低于或高于32度(当然如果在中国的话,数字可能就是40)。
而在ZestFinance的Hilbert模型中,大约25%的变量是人为干预的结果。Merrill指出,人类并不适合计算如此庞大的数据集和处理复杂的算法,因为它们有70000多个变量。
虽然ZestFinance已经早早看到了银行服务业的短板,但它并不唯一,Zebit、AvantCredit和Kreditech等公司也提供类似的方法。
现在机器学习越来越引起大家的关注,不久前, Hadoop领头公司Cloudera就收购了机器学习创业公司Myrrix,很多人对机器学习的印象可能都是实验室中大量晦涩难懂的理论和数据分析,然而已经有很多创业公司已经将其实现了商业化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29