京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统石油企业如何利用“大数据”挖金_数据分析师
“大数据”不是新生事物,百度、谷歌的搜索服务就是典型的“大数据”运用。面对信息时代的冲击,身为工业化时代规模经济代表的传统石油公司受到了时代变局的巨大压力。一方面,传统化石能源面临枯竭,而且开采成本持续上扬;另一方面,人们对环境质量要求日渐苛刻,新能源逐渐成为未来选择,而且其成本也在中国世界工厂的助推下继续下降。这两方面的压力迫使传统石油公司必须转型成为新型的创新型公司。
“大数据”的五大价值体现石油企业从事的勘探开发、炼化、销售、管道储运等业务属于数据密集型行业,历史上已经累积了海量的异构数据。“大数据”对石油企业的价值主要体现在以下几个方面:
1帮助石油企业提高勘探开发决策的效率和水平,实现新的油气增产。如“大数据”可以同时使用钻井和生产数据,将储层的变化情况实时提供给储层分析工程师,为生产人员提供举升方法改造方案。“大数据”也可以用来引导页岩气压裂。
2帮助石油企业发现消费者的消费趋势和潜在需求,进而促进业务创新和开发潜在市场。如在加油站营销过程中,通过完善数据收集分析和监测体系,可追踪每个客户的个性化需求,进而开展定制化服务与管理,并适时推出新的产品和服务,从而吸引和留住更多的客户,以扩大市场份额。
3“大数据”能够帮助石油企业实现对网络舆情、社会动态以及国际形势的监控分析,从而为正确实施“走出去”战略、降低海外投资风险提供保障。如在对外油气合作开发过程中,通过对重点资源国地缘政治、经济动态的分析和把握,能够建立良性互动的竞争合作关系,从而实现从挑战向机遇的转化。
4用“大数据”改进人才管理包括评估雇员敬业程度,识别人员技能缺陷,根据需要修订招聘做法;还可以利用“大数据”提升员工能力,确定投资培训和专业发展目标。
5油田公司利用“大数据”解决方案改善安全,减少作业对环境的影响。比如水力压裂,遭到指控的HSE案例涉及空气污染、饮用水污染以及地震影响。通过越来越先进的地下传感器收集和分析数据,钻井承包商可以更好地知道如何减少注入地层的压裂液用量。利用“大数据”进行HSE管理,不仅可以增进安全,减少对环境影响,还可以使作业更有效并节省作业开支。
中国石油企业的“应对法则”为有效利用“大数据”,中国石油企业需在技术、管理和人才等多方面做好应对。
1应与专业技术公司共同推进相关技术的研究和应用面对推陈出新、高速发展的众多技术,石油企业应积极跟踪、适时引入并试点实施,做好应对“大数据”的技术储备。
2应尽快建立相应的数据应用和信息化管理模式数据是企业的共同资产,只有实现数据充分共享,才能最大化发掘数据价值。因此,需打破传统的部门壁垒,建立涵盖企业全局的数据共享与服务合作机制,进而搭建跨地域、跨部门、跨专业的企业级“大数据”应用中心,形成更为科学的数据价值发掘和应用模式。
3要着力培养“大数据”专业人才由于“大数据”应用涉及多学科、跨领域的知识,既需要精技术、懂业务的复合型人才,也需要数学、统计学和经济学等其他专业人才,更需要大量从事数据分析的数据分析员、数据科学家。但是,目前此类人才缺口较大。未来6年,仅美国就需要14万到19万名拥有数据深度分析专长的从业者。因此,中国企业应未雨绸缪,做好应对“大数据”的人才储备。
4需重视数据资产保护从油田和销售渠道搜集的数据是宝贵资产,国内外的竞争者如果拿到便可从中获益。油气业的“大数据”先驱要建立严格的安全政策,阻止黑客入侵,把安全风险降到最低程度。对于物理资产(如传感器),要像数据资产一样保证它们的安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22