
大数据时代基金经理如何投资_数据分析师考试
“现在并不缺乏信息,缺乏的是挖掘处理信息的能力”。
在王政看来,在信息爆炸的当下,需要借助机器和人工智能的力量帮助完成人力无法高效完成的信息处理工作。未来,大数据时代的资产管理将伴随着机器学习和智能计算的发展,成为以人工智能为依托的智能金融。
作为公募基金的“过来人”,王政对传统基金经理的日常作息熟谙于心:7点起床上班,路上开始浏览前天外盘情况,国际市场的主要指标以及重大动态;8点进入办公室,浏览国内外主要财经网站,晨会与同事一起讨论当天最新的宏观政策,财经和市场动态;9点-15点看盘,管理投资组合,看报告;收盘后对当天市场行情进行总结、分析,晚餐时继续与同行进行近期市场和投资热点讨论。晚上看长篇研究报告,20点左右上网看上市公司公告,并为第二天的工作做好充足准备。午夜,休息。
“占据大部分工作时间和精力的,正是对新闻、公告、热点、行情、报告等各种信息的收集、处理和判断,并在此基础上做出正确的投资决策。”王政说,在互联网如此普及之前,这样的投研过程基本是靠人工完成的。
而随着互联网高速发展带动信息量爆炸式增长,互联网数据逐渐呈现出明显的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、value(价值),因为规模极其庞大并在实时高速扩展中,被称为“大数据”。
在王政看来,“大数据”时代对投资管理的改变是显而易见的,投资研究开始由原来的小样本向全样本,由定期向实时变化着。
“在大数据背景下,我们需要借助机器和人工智能的力量,帮助我们完成人力无法高效完成的信息处理工作。”王政认为:“而这将改变基金经理传统的投研模式。”
王政表示,通过智能计算和机器学习,可以对所有的非结构化数据进行分析,在数量庞大而覆盖广阔的数据中,把所有的投资标的都连接起来,建立起一个完整的关系图谱;在此基础上,动态跟踪实时新闻,捕捉各类事件,进而建立起事件影响在关系网上传导的机制。
在他看来,大数据冲击下,传统的基本面投资面临变革:“有家美国公司利用卫星24小时监测超市的车流、货运、港口的运输,并卖给华尔街的投资公司,使他们不用再等官方数据,不用去工厂门口蹲守,就可以实时通过卫星第一时间得知市场的变化。信息传递速度改变着投资的速度。”
除了基本面,大数据背景下的投资管理也能更快更全地收集和分析社会情绪数据。王政介绍,通联数据所在做的金融云平台,正是基于大数据分析和智能计算的新型互联网金融服务,比较全面地收集处理了基本面和社会情绪等多方面的数据,力图准确提炼影响市场波动的诸多因子。
“这并不意味着彻底摒弃传统的投研理念,价值投资、主题投资、事件驱动投资、情绪投资等依然需要遵循,但操作方式和以前相比会有根本改变。投资者将更多依赖大量数据和智能分析的技术快速找到投资机会,直接进行投资。”王政表示。
“投资,已由一门艺术发展为一门科学”这是20年前,王政的两位同事——Grinold 和Kahn提出的观点。他们通过总结投资中的一些规律,覆盖了收益率预测、风险管理、成本管理、绩效评估等核心因素,用计算机分析来构建投资模型。这些科学模型帮助他们在20年间成就了世界全球最大的资产管理公司,即如今的贝莱德。
“而未来,大数据时代的资产管理将伴随着机器学习和智能计算的发展,成为以人工智能为依托的智能金融。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08