京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代基金经理如何投资_数据分析师考试
“现在并不缺乏信息,缺乏的是挖掘处理信息的能力”。
在王政看来,在信息爆炸的当下,需要借助机器和人工智能的力量帮助完成人力无法高效完成的信息处理工作。未来,大数据时代的资产管理将伴随着机器学习和智能计算的发展,成为以人工智能为依托的智能金融。
作为公募基金的“过来人”,王政对传统基金经理的日常作息熟谙于心:7点起床上班,路上开始浏览前天外盘情况,国际市场的主要指标以及重大动态;8点进入办公室,浏览国内外主要财经网站,晨会与同事一起讨论当天最新的宏观政策,财经和市场动态;9点-15点看盘,管理投资组合,看报告;收盘后对当天市场行情进行总结、分析,晚餐时继续与同行进行近期市场和投资热点讨论。晚上看长篇研究报告,20点左右上网看上市公司公告,并为第二天的工作做好充足准备。午夜,休息。
“占据大部分工作时间和精力的,正是对新闻、公告、热点、行情、报告等各种信息的收集、处理和判断,并在此基础上做出正确的投资决策。”王政说,在互联网如此普及之前,这样的投研过程基本是靠人工完成的。
而随着互联网高速发展带动信息量爆炸式增长,互联网数据逐渐呈现出明显的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、value(价值),因为规模极其庞大并在实时高速扩展中,被称为“大数据”。
在王政看来,“大数据”时代对投资管理的改变是显而易见的,投资研究开始由原来的小样本向全样本,由定期向实时变化着。
“在大数据背景下,我们需要借助机器和人工智能的力量,帮助我们完成人力无法高效完成的信息处理工作。”王政认为:“而这将改变基金经理传统的投研模式。”
王政表示,通过智能计算和机器学习,可以对所有的非结构化数据进行分析,在数量庞大而覆盖广阔的数据中,把所有的投资标的都连接起来,建立起一个完整的关系图谱;在此基础上,动态跟踪实时新闻,捕捉各类事件,进而建立起事件影响在关系网上传导的机制。
在他看来,大数据冲击下,传统的基本面投资面临变革:“有家美国公司利用卫星24小时监测超市的车流、货运、港口的运输,并卖给华尔街的投资公司,使他们不用再等官方数据,不用去工厂门口蹲守,就可以实时通过卫星第一时间得知市场的变化。信息传递速度改变着投资的速度。”
除了基本面,大数据背景下的投资管理也能更快更全地收集和分析社会情绪数据。王政介绍,通联数据所在做的金融云平台,正是基于大数据分析和智能计算的新型互联网金融服务,比较全面地收集处理了基本面和社会情绪等多方面的数据,力图准确提炼影响市场波动的诸多因子。
“这并不意味着彻底摒弃传统的投研理念,价值投资、主题投资、事件驱动投资、情绪投资等依然需要遵循,但操作方式和以前相比会有根本改变。投资者将更多依赖大量数据和智能分析的技术快速找到投资机会,直接进行投资。”王政表示。
“投资,已由一门艺术发展为一门科学”这是20年前,王政的两位同事——Grinold 和Kahn提出的观点。他们通过总结投资中的一些规律,覆盖了收益率预测、风险管理、成本管理、绩效评估等核心因素,用计算机分析来构建投资模型。这些科学模型帮助他们在20年间成就了世界全球最大的资产管理公司,即如今的贝莱德。
“而未来,大数据时代的资产管理将伴随着机器学习和智能计算的发展,成为以人工智能为依托的智能金融。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08