京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就在几年之前数据分析科学还依旧局限于研究领域,得益于这些研究者们的贡献,现在大数据已经成为了潮流,人们正争先恐后地进入该领域。
从今年年初到现在,几乎所有的CEO,CIO,CDO,CMO,SVP,CCVP都在试图解答这个无解的问题,寻找未来面临的问题的解决方案。这些典型的问题包括如下。
如果让我的公司华丽地进行革新?
如果将自己的服务和产品打入市场?
如何让员工转变原有观念,接受根据有洞察力和创造力的数据分析理念?
如果数据分析能力还不够成熟的情况下,如何做出漂亮的产品?
对于政府主导的项目,我们该如何推动社会的发展,比如通过数据分析来减少犯罪率。
举个例子:如果你在石油部门工作,试想下如何才能提高石油的产量?因为先进的科技以及商业利益的驱使已经加速了资源的消耗,我们不得不采用比较困难的方法,比如采集深海石油或者岩石层的石油,对于地质勘探这个问题我就不再班门弄斧了,WAZ和NATS能提供更多有价值的数据。试想一下如果你拥有一双发现黄金的眼睛,这会意味着什么?
没有任何一个行业可以说自己和数据完全无关,随着产生和获取数据的途径越来越多,有远见和智慧的公司机构已经意识到了数据分析能力的重要性,以至于各种CXO们为这些问题寝食难安。
先来了解下什么是数据学&数据分析师
维基百科的定义是这样的:
维基百科:什么是数据学? 数据学是从数据中获取信息的科学,它包括了很多组成要素,依托于各个领域的技术和理论,其中包括信号分析,数学,概率论,机器学习,统计学,计算机编程,数据工程,模式识别,数据可视化,不确定模型,数据仓库和用于分析数据和开发数据产品的高性能运算技术。数据学并不局限于单纯大数据而已,尽管大数据是其重要的组成部分。
那么什么是数据分析师?
什么是数据分析师?数据分析的从业者称为数据分析师。数据分析需要专业的知识背景,数据分析工作需要具备的能力包括数学,概率学,计算机学,尽管他们未必要拥有这些领域的学位证书。不过通常数据分析师们只擅长其中某个领域,所以数据分析工作通常需要一个团队来完成,这个团队中人们各司其职,相互协助和合作。
为什么数据分析如此重要?为什么是现在?
现在结束上面无聊的概念部分,让我们来探讨下为什么这个词,当今社会究竟发生了什么?
我曾经和我之前的一个合伙人有过一次有趣的谈话,我们探讨了咨询行业为什么变化如此之大的问题。你们可能并没有注意到Booz,Monitor Group这些老牌咨询公司已经被其传统的运作方式拖垮了,如果不去改变传统的运作模式,会有越来越多的公司陷入同样的麻烦之中。
他们面临的问题在于“基于固有模式的咨询服务”,如果你是相关行业的从业者,肯定知道我说的是什么意思。但越来越多的客户更加关心的问题是“如果”,他们不再关心你的长篇大论,因为他们自己就可以完成这些事情。
现在的客户远比你想象的NB的多,他们会在找到你之前自己查找搜集和处理相关资料。他们真正需要的是专业的,具有远见和说服力的具有预测性的建议。如果你不能提供这样的服务,那么你就出局了。
企业数据管理服务领域同样面临着相同的挑战,我们正从单纯的“描述性或者因果分析”以及“请告诉我将会发生什么”的模式转变到“有预测性的,相关和全面的如果-那么模式。”
现在我们已经正式开始步入大数据时代,两个重要因素正促进这种改变。其一,各领域产生大量的数据已经可以为我们所用,其二,基础设施(IaaS)的巨大发展,而这些改变在以前是不可想象的。
这些改变促进了物联网的发展——通过基于地理位置的通讯,实时定位以及嵌入式传感器将原本简单的物体变得具有智慧。下面这幅图展示了我想表达的内容,看看你的公司正处在哪一阶段?
总结
当今社会产生的巨大个人数据将是一个重大的商业机遇,不论去分析交易记录去规避风险或者预测用户的行为来制定用户推广计划,你要做的不仅仅是建设一个看起来很酷的平台,你更需要组件一支NB的队伍和详细的计划。
不要再单一通过数据分析来进行归纳总结来制定商业计划书,我们还需要关注数据分析和机器学习的结合,因为他们可以给我们带来海量数据背后巨大的价值。它可以帮助你解决更高层次的问题并带给你前所未有的的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27