
就在几年之前数据分析科学还依旧局限于研究领域,得益于这些研究者们的贡献,现在大数据已经成为了潮流,人们正争先恐后地进入该领域。
从今年年初到现在,几乎所有的CEO,CIO,CDO,CMO,SVP,CCVP都在试图解答这个无解的问题,寻找未来面临的问题的解决方案。这些典型的问题包括如下。
如果让我的公司华丽地进行革新?
如果将自己的服务和产品打入市场?
如何让员工转变原有观念,接受根据有洞察力和创造力的数据分析理念?
如果数据分析能力还不够成熟的情况下,如何做出漂亮的产品?
对于政府主导的项目,我们该如何推动社会的发展,比如通过数据分析来减少犯罪率。
举个例子:如果你在石油部门工作,试想下如何才能提高石油的产量?因为先进的科技以及商业利益的驱使已经加速了资源的消耗,我们不得不采用比较困难的方法,比如采集深海石油或者岩石层的石油,对于地质勘探这个问题我就不再班门弄斧了,WAZ和NATS能提供更多有价值的数据。试想一下如果你拥有一双发现黄金的眼睛,这会意味着什么?
没有任何一个行业可以说自己和数据完全无关,随着产生和获取数据的途径越来越多,有远见和智慧的公司机构已经意识到了数据分析能力的重要性,以至于各种CXO们为这些问题寝食难安。
先来了解下什么是数据学&数据分析师
维基百科的定义是这样的:
维基百科:什么是数据学? 数据学是从数据中获取信息的科学,它包括了很多组成要素,依托于各个领域的技术和理论,其中包括信号分析,数学,概率论,机器学习,统计学,计算机编程,数据工程,模式识别,数据可视化,不确定模型,数据仓库和用于分析数据和开发数据产品的高性能运算技术。数据学并不局限于单纯大数据而已,尽管大数据是其重要的组成部分。
那么什么是数据分析师?
什么是数据分析师?数据分析的从业者称为数据分析师。数据分析需要专业的知识背景,数据分析工作需要具备的能力包括数学,概率学,计算机学,尽管他们未必要拥有这些领域的学位证书。不过通常数据分析师们只擅长其中某个领域,所以数据分析工作通常需要一个团队来完成,这个团队中人们各司其职,相互协助和合作。
为什么数据分析如此重要?为什么是现在?
现在结束上面无聊的概念部分,让我们来探讨下为什么这个词,当今社会究竟发生了什么?
我曾经和我之前的一个合伙人有过一次有趣的谈话,我们探讨了咨询行业为什么变化如此之大的问题。你们可能并没有注意到Booz,Monitor Group这些老牌咨询公司已经被其传统的运作方式拖垮了,如果不去改变传统的运作模式,会有越来越多的公司陷入同样的麻烦之中。
他们面临的问题在于“基于固有模式的咨询服务”,如果你是相关行业的从业者,肯定知道我说的是什么意思。但越来越多的客户更加关心的问题是“如果”,他们不再关心你的长篇大论,因为他们自己就可以完成这些事情。
现在的客户远比你想象的NB的多,他们会在找到你之前自己查找搜集和处理相关资料。他们真正需要的是专业的,具有远见和说服力的具有预测性的建议。如果你不能提供这样的服务,那么你就出局了。
企业数据管理服务领域同样面临着相同的挑战,我们正从单纯的“描述性或者因果分析”以及“请告诉我将会发生什么”的模式转变到“有预测性的,相关和全面的如果-那么模式。”
现在我们已经正式开始步入大数据时代,两个重要因素正促进这种改变。其一,各领域产生大量的数据已经可以为我们所用,其二,基础设施(IaaS)的巨大发展,而这些改变在以前是不可想象的。
这些改变促进了物联网的发展——通过基于地理位置的通讯,实时定位以及嵌入式传感器将原本简单的物体变得具有智慧。下面这幅图展示了我想表达的内容,看看你的公司正处在哪一阶段?
总结
当今社会产生的巨大个人数据将是一个重大的商业机遇,不论去分析交易记录去规避风险或者预测用户的行为来制定用户推广计划,你要做的不仅仅是建设一个看起来很酷的平台,你更需要组件一支NB的队伍和详细的计划。
不要再单一通过数据分析来进行归纳总结来制定商业计划书,我们还需要关注数据分析和机器学习的结合,因为他们可以给我们带来海量数据背后巨大的价值。它可以帮助你解决更高层次的问题并带给你前所未有的的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15