京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据金融”亟待“大数据安全”_数据分析师
5月26日,贵阳国际大数据博览会暨全球大数据时代贵阳峰会即将盛大开幕。本次数博会将“‘互联网+’时代的大数据安全与发展”作为峰会主题,表明了数据安全的极端重要性,体现了主办方极强的数据安全意识。2013年至今,大数据技术迅速地变革着中国金融行业,已在精准营销、小额信贷、高频交易等领域取得了累累硕果。但是,这把双刃剑也给中国金融行业的数据安全带来了新的挑战,唯有从多个层面组合出拳,夯实“大数据安全”,才能保证“大数据金融”的进一步发展。
“大数据金融”带来新挑战
第一,数据应用侵犯客户个人隐私。交叉检验技术和“块数据”技术的广泛应用,使得基于大数据的身份识别日益简单且难以察觉。近年来,中国金融企业对客户信息进行大量创新性的应用,例如分析客户消费偏好、预测客户投融资需求等。但是,这些创新也容易跨越雷池,挖掘过多的私人信息,造成对客户隐私的侵犯。
第二,数据监听威胁国家金融安全。2013年“棱镜门”事件表明,“海量数据+数据挖掘”的大数据监听模式可以对他国重要机构进行精确监听。无论是软硬件设施还是数据服务,我国金融企业都过度依赖国外厂商。在信息传输的各个环节,中国金融企业和金融机构的内部信息可能通过国外厂商预留的“后门”泄露给国外机构,从而成为大数据监听的受害者。
第三,虚假数据引发金融市场风险。由于采用相关关系取代了因果关系,大数据基础上的金融决策对数据的信息非常敏感。一旦数据中混杂了虚假的信息,就可能导致错误的交易行为,进而引发金融市场风险。2013年4月23日,美联社Twitter账号出现“白宫遭袭”的假新闻。受此影响,众多基金公司的交易程序自动抛售股票,美国股市随即暴跌。
“大数据安全”需要组合拳
首先,金融大数据的法律监管需从“授权制”向 “负责制”转变。监管的标准不拘泥于企业是否获得他人数据授权,而是重点监控企业在数据搜集、处理和发布过程中是否承担起了保护他人数据安全的责任。该监管机制既能够避免“授权制”的巨大交易成本,从而支持金融大数据的“二次应用”和应用创新,也能保证企业对数据安全进行充分保护。
其次,金融监管部门应借鉴贵阳大数据交易所模式,构建全国性的金融大数据交易平台,规范并促进数据资产的流通。一方面,该交易平台可以对入市交易的数据资产进行合法性和真实性审查,并对违规会员进行处罚。这将在源头上降低侵犯隐私权、发布虚假信息等数据风险,提高数据安全性。另一方面,规范化的交易市场也能够提高数据资产的定价和配置效率,为金融行业的大数据创新提供持续动力。
最后,中国金融行业需加快软硬件设施和数据服务的国产化进程。近年来,思科、彭博社等国外厂商纷纷卷入信息安全丑闻,我国金融数据通道的独立自主刻不容缓。中国金融行业应学习欧盟的经验,稳步减少在银行数据中心等关键领域对国外设备和技术的依赖,支持重建本国的“技术自主权”,促使大数据技术更加安全地服务于中国金融创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08