
这是中国科学院院士、中科院遥感与数字地球所所长郭华东于日前在北京召开的大数据与科学发现国际研讨会上做出的判断。从数据发展历史看,19世纪70年代以来,数据量大约每十年翻一番;从工业化时代进入信息化时代后,数据量以每三年翻一番的速度持续增长;当今社会,随着计算机技术和互联网的快速发展,数据存储量、规模和种类更是飞速增长,“大数据时代”已经来临。
“不过,在大数据概念与应用实践中,互联网大数据、商业大数据得到了广泛重视和快速发展,与之相比,科学大数据的理论研究与实践还相对较少。”
在郭华东看来,大数据有着重要的发展潜力,其中重要的一点是能够改变人们的科研方式。“通过对大数据的挖掘,取得新的科学发现。”
实际上,科学界已经有了这样的先例。比如上帝粒子的发现,就是欧洲强子对撞机长期数据积累的结果;而诸如人类基因组计划、全球变化研究等,浩瀚的数据量也不断产生着重要的科学发现。
与此同时,科技界屡现大数据相关的论文、专刊和书籍。2008年,英国《自然》杂志率先出版了“大数据”专刊,分析了大数据对当代科学的影响和意义;2011年,美国《科学》杂志推出“数据处理”专刊;2012年,联合国发布大数据政务白皮书《大数据促发展:挑战与机遇》……
“大数据的数量之大已经出乎了人们的预料,更重要的是,它改变了人类认识自然的方式。”郭华东告诉《中国科学报》记者,“尤其是需要巨额投资建造、运行和维护大型研究设施的大科学工程,以及需要跨学科合作的大规模、大尺度的前沿性科学研究项目,更是与大数据联系密切。大数据+大科学=大发现。”
目前,国际上已经有一些学术组织和大型科学计划在着力推动科学大数据的发展,如国际科学理事会下属的国际科技数据委员会是全球最大的科技数据国际学术组织,现拥有国家会员、国际学术组织会员等50余个会员。2010年郭华东当选该组织主席。
任职期间,郭华东努力加强与各国际组织的联系,为其提供战略指导和专业的关键数据,积极推动各项工作,取得了显着的成绩。
在这些工作中,郭华东发现,科学大数据要真正引发科学上的大发现,还存在着一些瓶颈。除了数据获取、处理、存储、传输、系统控制等技术瓶颈外,理念和政策上的瓶颈更亟待突破。“对我国来说,政府已经认识到了大数据的重要性,但数据的共享工作仍然任重道远,这座高山还远远没有翻过去。”
一项统计数字显示,中国目前拥有的数据量占全球的14%;而到2020年,这一比例将上升至21%。
可现实的情况却是“即便同在一个单位里,两个部门之间都很可能不相往来”,“这些部门其实都掌握了许多数据,但不共享,这就等于没有大数据”。
郭华东呼吁,国家应将大数据上升为一项国家战略,做好顶层设计,要从国家层面上推进中长期计划和政策的实施。“大数据时代已经来临,如果认识跟不上,将来落后的不止一步两步。当我们把大数据看作与土地、森林、矿产一样的国家资源时,这件事就能够做好了。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28