
当云计算和大数据走向餐饮行业_数据分析师
Ziosk将平板电脑放置于餐厅的餐桌上,使用微软Azure云平台技术与大数据工具相结合的方式,通过机器学习的应用,来增加休闲餐饮的生意。
由大数据驱动的预测分析应用已经成为许多企业的命脉。从移动网络运营商到金融服务公司,从零售商到在线汽车经纪人,大数据平台技术和分析工具——有时运行在云中——被用来对客户活动信息进行精挑细选,并预测用户有哪些潜在的购买需求。
但有些类型的企业还在外围观望,例如,餐馆的用餐体验通常是很难像统计网站访问次数那样被快速的数字化并用于分析。这在智能手机上的一条差评微博就可以毁掉一个餐馆的时代,似乎并不那么直观;但餐饮连锁门店经理和数据分析师往往会深度挖掘那些经过详细描述的报道。
技术和服务供应商Ziosk正试图在安装于休闲、美食餐厅的桌面平板电脑系统上添加更多的自动化和实时分析功能,力求通过这种手段来解决这一问题。这种努力,利用了微软Azure云计算产品组合中的元素,旨在使餐馆能够自动向食客提供定向优惠促销和膳食建议。
截至到今年1月,美国Ziosk已经把其专用的平板电脑上放置于1400家美国餐厅中,这些平板电脑既精简了用餐服务,还能够为客户提供在线游戏,社交媒体链接,内置摄像头和其他娱乐方式。它们还可用于下订单并支付支票——Ziosk首席软件架构师Kevin Mowry如是说,如今其客户已包括Chili's和Red Robin chains。
在实时分析基础上下订单
Ziosk以前为餐厅经理和数据分析团队提供报告服务。要支撑这些服务,公司建立了基于微软的SQL Server的数据仓库,以及菜单管理和测量系统。不过,据Mowry说,分析平板电脑用户和系统进行交互的实时信息,将会为餐饮场所带来更大的利益,。
对于Ziosk来说,第一个目标是跟踪促销活动,以了解人们如何以及何时有可能回应他们,这样才能更好地预测哪些报价将吸引特定客户。但“还有很多我们能做的事,”Mowry说。例如,可从平板收集到哪些用户进行了查看、点击、下订单等操作的数据。然后这些数据和其他数据一起被分析,以便更准确的预测出其它就餐者可能会喜欢些什么。
“现在,如果你从事的是餐饮行业,你的餐厅对外提供纸质菜单,且你有电子支票,但你却不知道更多关于客户体验的事,”Mowry说道。你给出的建议可能仅限于当天的特价清单而已;但另一方面,如Mowry所说,许多零售网站使用分析算法和快速处理引擎,向游客提供相当复杂的产品推荐。“我们认为我们在餐厅菜单方面也一样可以做到这一点,”他补充说。
对于Ziosk来说,进入实时分析领域需要应用到机器学习,采用大数据集上先进的分析形式,在分析来源产生变化时自动调整其预测结果。而Mowry和他的团队正在寻找一个Azure云中的大数据平台,使其转向机器学习的步伐加快一些。
Mowry 说,Ziosk遵循内部先例而选择了微软的技术。它还利用到了位于Texas州的ArtisConsulting L.P公司的Richardson,建立了概念验证的部署。这个部署由微软的Hadoop的平台,Azure的HDInsight,以及一个由供应商在二月发布的名为Azure Machine Learning的预测分析应用程序组成。
“为了达到目的,相当长一段时间,我们一直在使用微软技术”Mowry说,其将Ziosk描述为一家中型公司,需要保护其所拥有的开发者资源。
“机器学习模型中存在着很多复杂性,他们可能要求使用者具备一定的技能,这些技能往往不那么容易学习”他补充道,以R语言和Python编程为例。微软在AzureMachine Learning所做的就是带来“一个为我们这样的公司准备的预测建模形式。你可以把它称作大众化的机器学习。”
对你的模型进行良好训练
Mowry的团队通过微软Azure服务平台即服务(PaaS)接口与云应用程序进行交互。他说,机器学习模型必须使用已知的良好数据集进行“训练”,这样做使用户能够找出新模型如何能够符合现实。
“当你训练模型时,你会尝试不同的算法。这并不难,因为Azure机器学习有很多内置的算法,”他说道。“你链接到一个数据源,运行测试,然后交换其他算法,直到你得到最好的答案。”
微软声称它已经利用其经验构建Xbox游戏网络和Bing搜索服务来构建一些Azure的机器学习库。Mowry十分青睐这些库中的算法——其往往由微软和第三方开发。
机器学习也是一个持续的过程,他说。随着时间的流逝,更多的数据从Ziosk的平板电脑被收集起来,数据集和机器学习算法可以随之得到精炼。反过来,餐厅经理可以随时调整他们的菜单设置和促销产品,如果一切顺利的话,顾客将会趁菜还热的时候,得到他所想要的一切。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22