京公网安备 11010802034615号
经营许可证编号:京B2-20210330
二、大数据条件下 “云治理”模式的价值
“大数据时代”的来临,无疑是伴随着“数据”向“大数据”的转化进行的。虽然对大数据时代的理解不能局限于概念和技术,而应该引申至文化、哲学、社会学、政治学、管理学等诸多领域,但是无论如何引申和扩展,其本身所具有的“云技术”特征,依然是最稳固、最鲜明的核心根据。
1.“云治理”概念成立的前提。
大数据时代的来临非同小可,“大数据”将改变商业运作、政府管理、生活方式和信息的积累,促使整个社会发生伟大的变革。政论家认为,“大数据的民意和政治”将开启网络民主的新时代,执政者应该适应大数据时代的要求,积极应对“快速自由”的民意,善于应对各种“民意事件”;媒体专家认为,大数据时代使得任何有关“民生问题”的信息传播,都有可能引发公共危机事件;信息技术专家认为,新的“移动革命”将产生“移动形态的大数据”,最终产生“移动性质的信息爆炸”。与传统的固定居所、固定空间的信息传播形式不同,真正的“流动性大浪”将把世界淹没,社交媒体公司的传统模式将出现衰退趋势;哲学家认为,大数据开启了一个新的流动性“时间坐标”,开启了一个“信息时间”无所不在、到处侵扰的新型的现代性存在形态。
表面上,“大数据”仅仅是对社会存在的“数据状态”的一种描述而已,本身谈不上什么更深刻的含义。如果使“大数据”真正得以应用,还必须与“云计算”相联系。传统的数据处理方式已经不能适应大数据的收集、整理、储存、检索、共享、分析等多重功能。倘若不加整理,所谓的大数据的网络空间就会成为“塞满垃圾信息的旷野”。显然,“大数据”的存在依据是技术信息的飞速膨胀。但是,这里的技术信息并非纯粹的技术性范畴,而是已经与全球化的生活、生产紧密地融为一体。从经济到文化、从意识形态到社会治理、从政治到国际关系,“大数据”之所以能够在其中发挥着越来越重要的作用,关键就在于大数据背后所隐含的“云计算”。对海量的、多样化的“大数据”现象进行“云计算”,可以快速获得各自所需的有价值信息。在这个意义上,拥有“大数据”是一种“资料前提”,更是一种“资源前提”。显然,“云治理”概念成立的前提,是网络化资源、服务的不断增加。其中,“计算机化”则是促使“云治理”走向社会、走近民间的一个关键性的技术应用和操作概念。“计算机化”、“数字化”是网络化的技术前提与基本保证。
“大数据”的真实价值隐藏于各种各样、毫无规则的数据之下,要发掘数据价值、征服“数据海洋”,关键性动力就在于“云”的逻辑计算能力。随着数据总量呈几何级数增长,处理数据的技术将跨越式提升,“算法”会更加简明、高效,不仅软硬件升级,人类对数据的认识也不断深化。数据量扩展并不等于一个公司或机构具备拥有和利用大数据的前景,能够进行数据的深度发掘与关联性建构才能称得上拥有大数据。也就是说,在20世纪末,我们讨论互联网时代的社会现象时,最大的关注点就是对世界各种各样的信息化、网络化现象的判断与反思。而今天,我们讨论的问题是,社交网络、电子商务与移动通信把人类社会带入了一个以PB(即1024TB,1TB=1024GB)为单位的“结构化与非结构化”的各类“数据事实”的新时代。从“数字”到“数据”,再到“大数据”,本身已经不再专属于“技术发展”的范畴,而是能够反映社会发展(尤其是经济运行)方式变化的重要线索。通过“大数据”,我们可以看到个体化存在、群体运动和社会运行诸多崭新的特征。
2.“云治理”新模式的价值选择。
“云治理”作为社会治理新模式价值选择的逻辑依据在于:以超越社会传统治理的逻辑形式,实现“社会治理主体”的社会化,通过互联网的技术平台,实现更为高效地分享公共信息、公共服务的社会职能,促进解决社会资源闲置和无效的社会难题。在传统的社会治理模式中,“主控性的社会治理”成为最突出的特点,而大数据促进了公共信息、公共资源乃至私人闲置资源的分享与流动,这对社会治理提出了更为严峻的挑战。这意味着,纯粹的“公私界限”分立的“治理模式”,尽管在逻辑上成立,但在“云治理”的视野下,将遭遇共治、共享的新价值观念和庞大社会需求的冲击。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26