
商业分析服务加速行业布局 与大数据结合紧密
传统的华尔街选股者试图关注影响其投资的一些关键因素,诸如债券收益率、日元汇率,又或是石油价格和月度消费支出数据。
但一些新型的对冲基金公司认为,通过收集全球尽可能多的数据——从沃尔玛停车场占位情况的卫星图像到炼油厂释放出的热量信号,并且快速的投注以利用隐藏在这些数据集之间的关系,他们能够打败这些传统基金经理。
该方法体现了近来的一种投资转变,更多的依靠大数据和算法在竞争对手间赢得比较优势。首尔一家名为Jumpgate科技的公司宣称,他们正试图消除人为参与,放手让机器学习技术自由探索和利用世界日益增长的数据宝库。
那么对冲基金的人类创始人又将是何种角色呢?设计一个好的系统,让它可以利用大量的数据点,并收集更多的数据流供给该项目。Jumpgate,诚然规模不大,却已跻身于所谓的金融科技公司行列,他们试图将硅谷的科技创新融合进深谙金融市场的华尔街。
Jumpgate公司的董事长兼首席执行官Kristof Olesch自述其自13岁起就开始编程,16岁便开始在证券市场投资。目前该公司已经招募了一些工程类的博士毕业生。
一家更具规模的公司,总部设在纽约的二西格玛投资有限责任公司(TwoSigma Investments LLC),荣获本周《华尔街日报》头版的主角,编译了一款程序,让机器获取收益报告、天气预告和Twitter上的海量信息。
为了分配其价值240亿美元的管理资产,two sigma公司的策略是在进行一项交易前,基于这些数据产生不同的投资模型,然后用一种算法让模型之间彼此对抗,最终择优选取出最佳投资策略。
这些投资者们说,这是第一次,全球的计算机能够存储和学习从世界各地收集到的信息,这些信息来源涵盖超级计算机、智能手机,以及嵌入日常家居用品的小型处理器。
大部分的数据点可能帮不上股票投资者什么忙。有时,一个神秘的数据点只是一个神秘的数据点而已。
但是Olesch先生确信它远不止表面看来那么简单。传统的投资者只能籍由与公司管理层的会议、细致阅读财务报表和渠道检查来获得信息。而他则希望通过利用电脑的力量,能获得大规模的信息化优势。
Olesch先生指出:“柯达的终结是由于技术革新,而现在资产管理者的工作方式也面临同样的境况。” 他现在已有大约3000个数据流,他希望很快能够增加到约10000个数据流。
举个例子:商店停车场的商业卫星图像不但可以提供诸如商场交通等信息,也可以透露包括驾驶习惯、天气类型及其它众多人类基金经理无法预测的指标。
同样的,观察一个炼油厂的热信号能够推导出该厂设备是否满负荷运转。
“现在人们仅仅处理使用了全球1%的数据,” Olesch先生说道:“我们希望得到这些数据,而不是等着别人告诉我们数据处理已饱和。”
正因如此,现在很多公司专注于Olesch先生所说的“技术侦察”——想方设法接入各种数据流,无论来自开放数据还是通过与那些可能坐拥大量潜在价值数据的公司或机构合作而获得的数据。
到目前为止,Jumpgate这家在首尔成立,却在新加坡注册的公司,认为该战略行之有效。尽管和Two Sigma这样的大公司相比,它的基金规模还很小,但是Olesch先生表示其基金在头三个月中均业绩良好,即使在其基准——标普500指数都不景气的情况下,它仍保持每个月都是正收益。
根据IDC最新发布的《中国商业分析服务市场2015-2019年预测与分析》,商业分析服务市场将持续稳定增长,并在多个行业中均有进一步深入的应用,其与大数据技术的结合也备受企业关注。而在不同行业中,市场对与商业分析相关的定制化服务的需求依然强烈。
IDC数据显示,中国商业分析服务2014年的市场空间达到13.98亿美元,较2013年增长了16.4%。IDC预计中国商业分析服务市场将在未来5年实现16.7%的复合增长率,到2019年市场规模有望达到30.27亿美元。
IDC中国企业级研究部高级分析师聂楠指出,随着企业管理要求的不断提高及行业内的激烈竞争,企业对商业分析的价值越来越认可,商业分析也从最初的信息查询与展现功能,更多的向精准营销、风险管控、集团决策分析等更加智慧的方向发展。而随着对非结构化数据的挖掘及处理能力的提高,商业分析与大数据的结合也进一步深入行业应用。目前中国商业分析服务市场呈现出如下特征及发展趋势:
智慧城市建设和产业转型促进商业分析在重点行业中的蓬勃发展。金融和电信行业作为商业分析应用的领军者,除了在数据仓库、决策分析、查询统计、客户分析等方面的需求外,对大数据技术以及数据治理等领域更为关注。而在政府决策、制造、交通、医疗、零售、电子商务等领域,商业分析已经有特定应用,在智慧城市建设及产业转型升级需求的推动下,这些领域未来还将蓬勃发展。同时,商业分析服务提供商也在加速行业布局,抢占以上新兴领域的市场份额。
商业分析与大数据的结合越来越紧密。大数据时代的到来,扩大了“数据”概念的外延。大数据技术帮助用户从海量的更加复杂的数据中挖掘信息。商业分析作为结构化数据时代蓬勃发展的产物,在未来与大数据技术的结合将越来越紧密。而随着云计算技术的兴起,与数据分析相关的云服务也初现雏形。可以预见,未来与大数据和云计算的结合将进一步促进商业分析服务市场的发展。
中国商业分析服务市场已经形成初步的竞争格局。 与全球市场相比,中国商业分析服务市场的发展尚处初期,未来市场潜力巨大。目前,中国商业分析服务市场也已经形成了初步的竞争格局,竞争者可以大致归纳为三大类:咨询服务提供商,外包服务提供商及行业解决方案提供商。咨询服务提供商多为跨国企业,具备较完备的跨领域咨询能力;外包服务提供商有着强大的服务资源团队及开发实施经验;行业解决方案提供商在特定行业的积累较深。未来,在国家“自主可控”的IT建设原则下,跨国企业将与国内的服务提供商有更多合作,尤其在政府相关领域。
未来几年,随着行业应用的进一步深入,商业分析服务市场在行业格局上会有持续变化。中国也会涌现出更多专注在商业分析领域的解决方案提供商及服务商。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18