京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与云计算,拯救帕金森_数据分析师
医疗行业的变革正成为新的风口,今天作者想讲讲大数据与基因技术结合,正在产生什么新的想象力。其中尤以基因检测技术走到了前面,让我们谈谈“帕金森综合症”:
在未来,基因检测术将会成为医疗不可或缺的一部分。越来越多的人会进行基因测序来了解自己的生命体征和健康状况。国内最大的基因检测机构华大基因,也正在抓住机会,用信息技术提升基因检测技术,致力于提供更好的基因服务。
基因,这个被我们熟悉却又十分陌生的词汇开始频繁出现。然而基因检测海量、复杂、多变的数据计算需求一直是华大基因前进道路上的鸿沟。解决数据分析和计算成了必须要克服的问题。
大数据打入帕金森
2014年8月13日,迈克尔·J·福克斯帕金森氏症研究基金会(MJFF)和英特尔公司对外宣布了一项合作,促进帕金森氏症的研究和治疗——帕金森氏症是一种全球范围的、患病率仅次于阿兹海默氏症的神经退行性脑部疾病。这项合作将利用全新的大数据分析平台进行多阶段研究——利用可穿戴技术监测患者症状,并用收集得来的数据探索相关模型。
可穿戴设备能够24×7全天候地在后台实时收集和传输相关客观数据。通过这种方法,研究人员能以每秒数百读数的速度分析来自成千上万患者的数据,同时获得海量数据以用于探索模型和获取新发现,再也不必受限于零星收集得来的少量数据信息和繁杂的书面患者日志。
所有这些,都可进一步帮助实现针对帕金森氏症本质的洞察,从而帮助科学家们衡量新药品的功效,以及协助医生制定预后方案。
英特尔公司高级副总裁兼数据中心事业部总经理柏安娜表示,“帕金森氏症症状的多样性给疾病检测的进展带来了巨大挑战。新兴的技术不仅可以创建一个测量帕金森氏症的全新范例,还能为医学界提供更多数据,以便找出目前尚未明确的疾病特征,从而开拓全新的研究领域。”
大数据和云计算给医疗界带来了新的光明,利用它们来解决基因测序带来的问题是大势所趋。
解决信息技术瓶颈
“只有以科学发展,以大技术、大平台、大数据支撑下的基因产业,才是无穷无尽的,永远没有冬天。”华大基因总裁、深圳华大基因研究院院长汪建先生如是说。这也最终促成了华大基因与英特尔的合作。
华大基因在基因测序计算中应用的BWA(Burrows-Wheeler Aligner),是基因研究中一款十分优秀并且被广泛使用的序列比对软件。由于BWA软件代码分支多,并且有很多随机访问,起初大家都不看好BWA的移植效果。但实际测试性能却已经完全出乎专家预期。
BWA包括6种优化方法:
第一,使用OpenMP代替Pthreads,使用schedule实现负载均衡、使用KMP_AFFINITY=balanced, granularity=thread实现线程绑定。
第二,使用双缓存,同时进行数据读取和计算。
第三,使用TBB的内存分配代理取代glibc的内存分配。
第四,使用多缓存进一步减少IO瓶颈。
第五,简化耗时函数中的循环。
第六,在至强融核上增加任务级并行按照输入文件进行任务划分,每个任务处理一部分输入数据,避免OpenMP的Map-Reduce并行模式带来的负载不均衡的开销。
在尝试了6种优化方法之后,BWA获得的最好加速比已经达到2.19。
而不得不说的是至强和至强融核的组合在代码迁移和优化上为基因测序带来了非常大的优势。王丙强博士说:“代码的修改工作量不大,只需要对源代码进行很小幅度的修改,是添加一些辅助编译指示,就能在这个组合上运行的相当好。”
实际应用中,借助英特尔的产品技术,计算效率能大大提高。以测序为例,以前传统的方式需要几个星期时间,而现在8个小时就可以完成。这是非常大的突破。
这一重大突破的背后,则是英特尔至强融核协处理器(Xeon Phi)。这是英特尔面向高度并行的高性能计算(HPC)应用所推出的协处理器,能够提供多达61个内核、244个线程和1.2万亿次浮点运算性能。此外,英特尔至强处理器架构使用同样的编程语言、并行模式、技术和开发人员工具,因此以往在至强处理器上运行的应用,在向至强融核上迁移时,具有更便捷、更易于移植等优势。
其编码的简单可移植性,正是基因测序相关程序中的重要需求。而其强大的计算能力为提高基因测序速度提供源动力,标准的编程模型也为基因测序向至强融核上的移植提供了便利。
在测试基于英特尔至强和至强融核的高性能计算平台的同时,华大基因也正在执行3M百万基因组计划,即百万动植物基因组计划、百万人基因组计划、百万微生态基因组计划。该项目将联合全球科学家,通过上百万样本的测序构建遗传信息的数据库,进一步推动基因组测序和生物信息分析技术在粮食安全、医学应用、生态保护等重大发展问题的应用。
现代生命科学和医疗健康正转变为由大数据和大计算推动。在这个技术为王的时代,任何独立的高端技术都将面临寒潮。只有相互协作,共同探索开发,才能真正的造福于人类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26