
大数据时代,如何更好地运用云归档_数据分析师
大数据时代,面对非结构化数据的爆发式增长,我们需要更好的存储战略,以便以更低成本访问更多内容,通常思考分布式存储、云备份、云归档或加入分层技术的传统存储方案。美国昆腾国际公司亚太区高级市场营销总监Jim Simon认为,通过备份服务器、基于政策的文档管理以及云归档的结合,能够减少网络负载、备份存储和备份软件许可开支,并减少主存储成本,通常会节约40%的TCO。
昆腾公司昆腾对自身的定位是做数据流(从数据产生、使用到归档的整个过程,也称工作流)存储方案的公司,数据流在媒体、石油天然气勘探等行业最为典型。针对数据长期保存,昆腾已经研发出多种成熟的解决方案和产品,包括:
Jim Simon强调,不断备份相同的静态非结构化文件数据,不仅会给网络资源以及满足备份窗口带来压力, 同时主存储和备份成本也会增加,这会对 IT 预算带来更大的压力,实施归档策略才是解决方案。
昆腾正在致力于传统归档方案的升级,并将其与云归档相结合,以应对整个行业90%的新数据增长是非结构化数据的挑战。这一次,昆腾发布了三个新的增强型产品组合:
1、Artico智能 NAS 设备可在线访问内容,并智能地把数据分层存储到 Q-Cloud归档、 Lattus对象存储或Scala 磁带库中
2、DXi with Arkivio,整合了昆腾DXi设备与Rocket Arkivio Autostor软件,可在同一个设备上同时支持数据备份和归档
3、新的 Lattus扩展在线存储产品 ,带有对象存储节点,集成了新的6TB磁盘驱动器,提高了对象存储密度并降低了每 TB 成本
Artico智能 NAS 设备
根据昆腾对中国100多家用户的调查显示,当数据增长的时候,大约50%的IT经理会继续购买主存储,因为判断常用和不常用数据对IT经理来说还是比较困难的。但昆腾Artico分层策略设计的初衷,就是“在合适的时间把数据放到合适的位置”,它内置StorNext,与Arkivio Autostor数据迁移工具结合,可以帮助IT经理做分析和判断的工作,把内容迁移到成本较低的存储以节约资金,同时通过在一个深度活动库上共享内容而提高工作力。举例而言,针对纯文档的办公环境,Artico会根据文档类型,把视频、图片文件迁移到低成本的Artico存储上,另一个判断依据就是文件使用频率,整个过程对用户完全透明。
Artico本身提供33TB磁盘存储,可扩展到73TB,最多支持10亿份文件。通过云、对象存储或磁带技术,还可以提供更大的可扩展性。这就降低了购买更多主存储的必要性。Artico可通过 NAS 连接集成到多种环境,支持EMC、NetApp、HP、Linux、RedHat、Windows等多种不同的操作系统和主存储。
DXi with Arkivio
在DXi4700及DXi6900阵列,运行Rocket提供的Arkivio数据归档软件,可将主存储阵列的文件转移到Artico设备、或者具备重复数据删除功能的备份磁盘阵列当中,并在其中提供一个专门的归档分区,这可以减少备份窗口和网络占用。Jim Simon称,Arkivio Autostor能够评估数据属性并根据这些属性而支持智能政策,从而把非结构化数据从主存储迁移到DXi重复数据删除设备。
根据Jim Simon的现场演算,对于从主存储迁移到归档的每TB非结构化数据,DXi设备与Arkivio软件的组合可帮助客户节约超过60%的总体存储成本。
新的 Lattus 存储节点
对象存储能够在性能与成本之间实现新的平衡,昆腾Lattus已经利用对象存储技术来扩展在线存储,并提供即时访问数据,它最大的好处就是数据可以存储很多年也不会丢失,而且它能存储上百个TB的数据。此次Lattus提供新的带有6TB数据中心归档驱动器的S30存储节点,将每个阶段的原始容量提高到了72TB,相对当前的S20存储节点,密度提高50%,每TB成本降低了15%。
第三代存储战略解决方案
基于推出的这些新品,昆腾形成了自己的第三代存储战略解决方案,即结构化数据和非结构化数据分离:结构化数据可以备份到昆腾DXi虚拟磁带库备份设备,还可以进一步复制或者拿出一部分拷贝备份到云端或者远端;非结构化数据可以归档到DXi设备或者Artico设备上,最后在移到其他磁带库存储上。到云端或者远端的备份,得益于重复数据删除技术的利用,这不仅实现性能的提升,同时广域网传输也成为可能。
云端的数据备份,目前只支持Q-Cloud。谈到Q-Cloud Artico Archive在国内的进展,Jim Simon表示,正在随着AWS进行测试,未来也可能会支持别的公有云。他同时提醒,如果要完全从云端恢复数据,可能需要花费很多的时间,因而云归档和本地归档的结合非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28