京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,如何更好地运用云归档_数据分析师
大数据时代,面对非结构化数据的爆发式增长,我们需要更好的存储战略,以便以更低成本访问更多内容,通常思考分布式存储、云备份、云归档或加入分层技术的传统存储方案。美国昆腾国际公司亚太区高级市场营销总监Jim Simon认为,通过备份服务器、基于政策的文档管理以及云归档的结合,能够减少网络负载、备份存储和备份软件许可开支,并减少主存储成本,通常会节约40%的TCO。
昆腾公司昆腾对自身的定位是做数据流(从数据产生、使用到归档的整个过程,也称工作流)存储方案的公司,数据流在媒体、石油天然气勘探等行业最为典型。针对数据长期保存,昆腾已经研发出多种成熟的解决方案和产品,包括:
Jim Simon强调,不断备份相同的静态非结构化文件数据,不仅会给网络资源以及满足备份窗口带来压力, 同时主存储和备份成本也会增加,这会对 IT 预算带来更大的压力,实施归档策略才是解决方案。
昆腾正在致力于传统归档方案的升级,并将其与云归档相结合,以应对整个行业90%的新数据增长是非结构化数据的挑战。这一次,昆腾发布了三个新的增强型产品组合:
1、Artico智能 NAS 设备可在线访问内容,并智能地把数据分层存储到 Q-Cloud归档、 Lattus对象存储或Scala 磁带库中
2、DXi with Arkivio,整合了昆腾DXi设备与Rocket Arkivio Autostor软件,可在同一个设备上同时支持数据备份和归档
3、新的 Lattus扩展在线存储产品 ,带有对象存储节点,集成了新的6TB磁盘驱动器,提高了对象存储密度并降低了每 TB 成本
Artico智能 NAS 设备
根据昆腾对中国100多家用户的调查显示,当数据增长的时候,大约50%的IT经理会继续购买主存储,因为判断常用和不常用数据对IT经理来说还是比较困难的。但昆腾Artico分层策略设计的初衷,就是“在合适的时间把数据放到合适的位置”,它内置StorNext,与Arkivio Autostor数据迁移工具结合,可以帮助IT经理做分析和判断的工作,把内容迁移到成本较低的存储以节约资金,同时通过在一个深度活动库上共享内容而提高工作力。举例而言,针对纯文档的办公环境,Artico会根据文档类型,把视频、图片文件迁移到低成本的Artico存储上,另一个判断依据就是文件使用频率,整个过程对用户完全透明。
Artico本身提供33TB磁盘存储,可扩展到73TB,最多支持10亿份文件。通过云、对象存储或磁带技术,还可以提供更大的可扩展性。这就降低了购买更多主存储的必要性。Artico可通过 NAS 连接集成到多种环境,支持EMC、NetApp、HP、Linux、RedHat、Windows等多种不同的操作系统和主存储。
DXi with Arkivio
在DXi4700及DXi6900阵列,运行Rocket提供的Arkivio数据归档软件,可将主存储阵列的文件转移到Artico设备、或者具备重复数据删除功能的备份磁盘阵列当中,并在其中提供一个专门的归档分区,这可以减少备份窗口和网络占用。Jim Simon称,Arkivio Autostor能够评估数据属性并根据这些属性而支持智能政策,从而把非结构化数据从主存储迁移到DXi重复数据删除设备。
根据Jim Simon的现场演算,对于从主存储迁移到归档的每TB非结构化数据,DXi设备与Arkivio软件的组合可帮助客户节约超过60%的总体存储成本。
新的 Lattus 存储节点
对象存储能够在性能与成本之间实现新的平衡,昆腾Lattus已经利用对象存储技术来扩展在线存储,并提供即时访问数据,它最大的好处就是数据可以存储很多年也不会丢失,而且它能存储上百个TB的数据。此次Lattus提供新的带有6TB数据中心归档驱动器的S30存储节点,将每个阶段的原始容量提高到了72TB,相对当前的S20存储节点,密度提高50%,每TB成本降低了15%。
第三代存储战略解决方案
基于推出的这些新品,昆腾形成了自己的第三代存储战略解决方案,即结构化数据和非结构化数据分离:结构化数据可以备份到昆腾DXi虚拟磁带库备份设备,还可以进一步复制或者拿出一部分拷贝备份到云端或者远端;非结构化数据可以归档到DXi设备或者Artico设备上,最后在移到其他磁带库存储上。到云端或者远端的备份,得益于重复数据删除技术的利用,这不仅实现性能的提升,同时广域网传输也成为可能。
云端的数据备份,目前只支持Q-Cloud。谈到Q-Cloud Artico Archive在国内的进展,Jim Simon表示,正在随着AWS进行测试,未来也可能会支持别的公有云。他同时提醒,如果要完全从云端恢复数据,可能需要花费很多的时间,因而云归档和本地归档的结合非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26