京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,如何更好地运用云归档_数据分析师
大数据时代,面对非结构化数据的爆发式增长,我们需要更好的存储战略,以便以更低成本访问更多内容,通常思考分布式存储、云备份、云归档或加入分层技术的传统存储方案。美国昆腾国际公司亚太区高级市场营销总监Jim Simon认为,通过备份服务器、基于政策的文档管理以及云归档的结合,能够减少网络负载、备份存储和备份软件许可开支,并减少主存储成本,通常会节约40%的TCO。
昆腾公司昆腾对自身的定位是做数据流(从数据产生、使用到归档的整个过程,也称工作流)存储方案的公司,数据流在媒体、石油天然气勘探等行业最为典型。针对数据长期保存,昆腾已经研发出多种成熟的解决方案和产品,包括:
Jim Simon强调,不断备份相同的静态非结构化文件数据,不仅会给网络资源以及满足备份窗口带来压力, 同时主存储和备份成本也会增加,这会对 IT 预算带来更大的压力,实施归档策略才是解决方案。
昆腾正在致力于传统归档方案的升级,并将其与云归档相结合,以应对整个行业90%的新数据增长是非结构化数据的挑战。这一次,昆腾发布了三个新的增强型产品组合:
1、Artico智能 NAS 设备可在线访问内容,并智能地把数据分层存储到 Q-Cloud归档、 Lattus对象存储或Scala 磁带库中
2、DXi with Arkivio,整合了昆腾DXi设备与Rocket Arkivio Autostor软件,可在同一个设备上同时支持数据备份和归档
3、新的 Lattus扩展在线存储产品 ,带有对象存储节点,集成了新的6TB磁盘驱动器,提高了对象存储密度并降低了每 TB 成本
Artico智能 NAS 设备
根据昆腾对中国100多家用户的调查显示,当数据增长的时候,大约50%的IT经理会继续购买主存储,因为判断常用和不常用数据对IT经理来说还是比较困难的。但昆腾Artico分层策略设计的初衷,就是“在合适的时间把数据放到合适的位置”,它内置StorNext,与Arkivio Autostor数据迁移工具结合,可以帮助IT经理做分析和判断的工作,把内容迁移到成本较低的存储以节约资金,同时通过在一个深度活动库上共享内容而提高工作力。举例而言,针对纯文档的办公环境,Artico会根据文档类型,把视频、图片文件迁移到低成本的Artico存储上,另一个判断依据就是文件使用频率,整个过程对用户完全透明。
Artico本身提供33TB磁盘存储,可扩展到73TB,最多支持10亿份文件。通过云、对象存储或磁带技术,还可以提供更大的可扩展性。这就降低了购买更多主存储的必要性。Artico可通过 NAS 连接集成到多种环境,支持EMC、NetApp、HP、Linux、RedHat、Windows等多种不同的操作系统和主存储。
DXi with Arkivio
在DXi4700及DXi6900阵列,运行Rocket提供的Arkivio数据归档软件,可将主存储阵列的文件转移到Artico设备、或者具备重复数据删除功能的备份磁盘阵列当中,并在其中提供一个专门的归档分区,这可以减少备份窗口和网络占用。Jim Simon称,Arkivio Autostor能够评估数据属性并根据这些属性而支持智能政策,从而把非结构化数据从主存储迁移到DXi重复数据删除设备。
根据Jim Simon的现场演算,对于从主存储迁移到归档的每TB非结构化数据,DXi设备与Arkivio软件的组合可帮助客户节约超过60%的总体存储成本。
新的 Lattus 存储节点
对象存储能够在性能与成本之间实现新的平衡,昆腾Lattus已经利用对象存储技术来扩展在线存储,并提供即时访问数据,它最大的好处就是数据可以存储很多年也不会丢失,而且它能存储上百个TB的数据。此次Lattus提供新的带有6TB数据中心归档驱动器的S30存储节点,将每个阶段的原始容量提高到了72TB,相对当前的S20存储节点,密度提高50%,每TB成本降低了15%。
第三代存储战略解决方案
基于推出的这些新品,昆腾形成了自己的第三代存储战略解决方案,即结构化数据和非结构化数据分离:结构化数据可以备份到昆腾DXi虚拟磁带库备份设备,还可以进一步复制或者拿出一部分拷贝备份到云端或者远端;非结构化数据可以归档到DXi设备或者Artico设备上,最后在移到其他磁带库存储上。到云端或者远端的备份,得益于重复数据删除技术的利用,这不仅实现性能的提升,同时广域网传输也成为可能。
云端的数据备份,目前只支持Q-Cloud。谈到Q-Cloud Artico Archive在国内的进展,Jim Simon表示,正在随着AWS进行测试,未来也可能会支持别的公有云。他同时提醒,如果要完全从云端恢复数据,可能需要花费很多的时间,因而云归档和本地归档的结合非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08