京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2012年,大数据已经被证明是一个重要的趋势,并且对来年的大数据市场进行了很多的预测。现实情况是,客户将最终决定大数据的发展趋势,也将决定使用哪些技术解决方案来解决他们的独特业务问题。
在如今由数据驱动发展的世界里,企业为了保持竞争力,大数据已成为它们必须解决问题。就像云计算发展在过去的几年中的起起伏伏,它现在已经开始促使企业改变其基础设施建设,以应对复杂的挑战。根据最近的一项研究表明,大数据的数量预计将在2013年增加约60%,这个问题预计不会很快消失。
所以应该能看到,企业在2013年会面对大数据带来的商业或技术方面的挑战。我们可以肯定一件事在2013年,无论是大数据方面的技术变革还是公司董事会在产业上的决策,都将产生变化。
预测1:企业大数据主动从Sandbox迁出,并定义一套明确的业务和技术需求
在2012年,企业在大数据上面的主动升级,超过了大多数人的预测。根据对世界上300个大企业的研究显示,数据量预计将在2013年增加约60%。13%的受访者表示他们对大数据的准备已经到位。另外有38%的公司有了实施计划。
企业正在形成专门的大数据团队,对很多人来说这在预算上已经成为一系列的项目,因为企业需要继续寻找更好的方法来管理、存储和分析他们持续增长的、必须保持在线的、可用于分析的数据据资产。我们将会看到更多明确定义的需求开始出现无论是在业务方面还是在IT方面,如低成本的可扩展性、快速响应的查询和分析,以及充分利用现有的基于标准的工具(包括SQL和BI)的能力等。这是除了内置的安全性和数据可用性功能外,企业期待出现的功能。
预测2:公司在管理大数据时将寻求除了Hadoop以外新的技术组合
过去一年,Hadoop的势头越来越猛。Hadoop通过Web 2.0组织的推广,现在受到了银行、金融机构、电信运行商、大型零售商和其他企业的重视。然而,大数据的举措不仅集中在Hadoop平台。
业务和IT的挑战在于在不同的部门甚至于不同的公司之间组合使用各种不同的技术协调工作。企业部署私有云来管理数据财产与传统的数据库和数据仓库环境这两者的结合,以及在各种硬件上运行的Hadoop基础环境。所有企业大数据项目的一个共同的主题是渴望可以快速启动和运行而不会造成干扰到现有的IT环境。
预测3:预算限制是解决大数据挑战的最大障碍之一
大数据的支出正在上升,在未来一年,成本问题仍将是启动大数据项目时最大的一个障碍之一。根据最近的一项分析报告显示,大数据支出在2013年预计达到340亿美元。这些支出一方面是因为某些特殊行业组织由于行业的特殊性,必须保持数据在线和可用性;另一方面是由于企业想要利用来自多个源的数据的更多的信息,以进行更好的分析。这需要进行一个适当的平衡在满足业务需求的同时,寻找最高效的技术基础设施是一个挑战。
大数据的增长速度不会减慢。现有需求和未来需求的建设能力是至关重要的。太多太快不是要走的路,大数据并不一定意味着大笔的预算。
预测4:大数据工具必须同时满足业务和技术用户
在2013年,我们将看到大数据工具和应用程序的需求增长,它们将变得更容易使用,并且将同时满足业务和技术用户。如果你深入了解下Hadoop的基础技术能力,就会看到其在许多方面仍不成熟,需要独特的专业技能。我们已经看到了许多解决这方面的需求的新产品,包括Cloudera Impala和微软Polybase。事实上,今天已经存在的一些功能,使其更容易在正确的时间用最好的工具集访问正确的数据。
预测5:重量级厂商,如甲骨文和IBM,将会大数据市场进行收购
在过去一年,随着大数据市场的成熟,大型组织已经接受了大数据。我们预计,一些缺乏独特的技术能力或专业知识的厂商将会在2013年被收购。两个明显的重量级厂商是甲骨文和IBM它们已经在数据管理领域构建了多样化的产品。但更应该看到,产品上市时间是企业获得更强大的立足点的关键。
聚光灯下的大数据
随着越来越需要利用大数据扩大自身竞争优势,以及创新产品的兴起,会改变企业存储、管理和分析他们的最重要的资产数据。使企业找到一个更有效和更符合成本效益的管理PB级别的数据环境的方式。在接下来的12个月里,数据管理将会是关注的焦点,因为它是每个公司都要面对的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22