
国云数据CEO马晓东:没见过大数据何谈玩大数据
很坦诚,很直接,没有夹杂太多企业家、高管习以为常的官方话,这是我对马晓东的第一点印象。更进一步,作为国云数据的创始人兼CEO,马晓东的谈吐中却不时流露出对阿里的推崇,以及对在阿里巴巴工作经历的感激,可谓难得。
1986年1月出生,中国科技大学硕士毕业,早前在阿里巴巴从事大数据优化器、Hadoop、MapReduce等核心算法的研究,参与阿里大数据平台框架创建,马晓东于2011年从阿里巴巴辞职进行大数据挖掘、可视化分析领域的创业,创建苏州国云数据科技有限公司,现任创始人兼CEO。
2011年,大数据还远没有2013、2014年的火热,甚至于无人问津,“2011年选择从阿里巴巴辞职去创业,基于哪些方面的考虑?”因此我采用了直白的开场,不绕任何弯路。
当时在阿里巴巴做的大数据平台只有阿里自己能用,应用效果特别好,马晓东认准未来市场需求很大,同时难度很大,而他在淘宝这一苛刻环境成功做过大数据挖掘,有这方面的经验;其二,希望更多人、更多的企业能够应用大数据分析和挖掘,尤其是个人、中小企业很多用不起或者根本没有意识到数据分析的真正价值,他也希望真正推动产业发展,实现数据分析工具的普及,就像windows系统现在普及和造福大众一样,因而大数据大数据魔镜系列的免费版本也因此而生,目前也已服务上万家用户;其三,马晓东在校期间就拥有一支100人的精深技术团队,多次得到国家级肯定,并获得李开复老师的青睐与支持,而几年的工作经历,整个团队在实力、视野上也已经成熟;其四,“我从骨子里就想做有价值的事情”,出身于经商世家的马晓东,有着做企业的梦想。
时至今日,马晓东对创业的经历依然不胜唏嘘。2011年,当时市场还处于热炒“云计算”的阶段,大数据甚至可以说是无人问津,而理工科出身的他,创业之路可谓不足为外人道。实在的性格让他在没做出成绩之前不愿去拿投资,而在做出一定成绩之后,大数据作为一个新名词、新领域,投资人对大数据的认知可谓云里雾里。同时2B市场比2C市场更难被人认知,企业级市场总体发展不好。
发展到近两年,在对比美国大数据市场之后,在美国企业级大数据企业陆续上市之后,业内才逐渐对大数据有所认识。很多企业认为大数据等于舆情处理,去做非结构化数据,但在美国市场,结构化数据已经成熟才开始研究非结构化数据,中国却处于后知后觉的状态,结构化的东西没做好就去做非结构化数据, 所以很多企业最终走向被淘汰。
国外大数据之所以领先国内市场,还在于国外有数据环境,只有真正见过大数据才知道怎么玩,这也是国内ERP、CRM很多,但真正的数据产品并不多的原因。“没见过大数据去玩大数据,玩得好不好就可想而知了”,而国云数据的成功正是得益于见识过阿里海量的数据、玩过阿里苛刻的数据处理环境。
见过大数据的国云数据相较于国外的同类企业,优势到底体现在哪?马晓东表示稳定性、容错能力、准确性是一个有价值的大数据产品的基本要素。而国云数据因为真正经历过大数据,在这三点远强大于其他产品,基于比同类产品更强大的三大因素,国云数据更是一个数据价值提炼平台,其优势体现于以下几点:首先是功能,别的商业智能有的功能全覆盖;其二性能,渲染速度是是IBM Cognos的25倍;其三是大数据处理能力,大数据魔镜具备探索式分析、自动建模、省50%计算能力、精准营销几大特色;其四是易用性,人人都可以进行数据分析挖掘。
对于当前企业大数据市场,马晓东认为相比于13、14年,今年的市场虽然处于低谷,但其发展前景更加乐观。之前的市场可以说是病态的火热,很虚,而当概念炒到低谷,随之就会趋于理性,进而产生做实事的企业。
“国内企业大数据市场尚处于起步阶段,企业的精力更应该放在提升产品价值、产业链合作,共同对抗国外大数据产品,而不应该放在内耗上。”
马晓东对大数据市场有着独特的理解,并将大数据企业分为三类:其一是拥有数据方,比如阿里、京东、政府等;其二是大数据的纵向应用,例如行业专家,做大数据分析咨询,此类门槛较低;其三是大数据的横向应用,此类门槛较高,相当于挖金子的工具。
而大众认知中的大数据企业更多的是第三类,大数据的横向应用。而在这一产业链又拥有众多分支:可视化、可视化大屏、大数据分析挖掘、工具、存储、数据传输采集等等。相较于美国市场,以上应用尚处于起步阶段,同时企业级大数据市场很大,兵戎相接的局势不会出现,企业更应该担心的是国外的搅局者。产业链上下游应合作共赢,建立健康生态,促进市场发展,将竞争目标瞄准国外产品。
“我们有一个愿景,让人人都可以数据分析,企业都能用得起大数据”。据悉国云数据即将推出“大数据魔镜标准企业版”,面向中小企业,10万+的配置标价1万元,完全颠覆市场,也对市面上国外工具狮子大开口式的圈钱策略做了一回反攻。不管结果怎样,相信很多因工具昂贵而放弃购买的中小企业迎来了数据春天。
对于2015年及未来发展规划,马晓东透露国云数据定位于工具厂商,并且专注于工具厂商,不会涉足其他链条,在加大工具研发的同时,拓展海外市场,不会过多内耗。同时国云数据在2015年的战略重点是合作共赢,希望能与产业链上下游加大合作,推进产业发展,让人人都会、都可以数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30