京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国云数据CEO马晓东:没见过大数据何谈玩大数据
很坦诚,很直接,没有夹杂太多企业家、高管习以为常的官方话,这是我对马晓东的第一点印象。更进一步,作为国云数据的创始人兼CEO,马晓东的谈吐中却不时流露出对阿里的推崇,以及对在阿里巴巴工作经历的感激,可谓难得。
1986年1月出生,中国科技大学硕士毕业,早前在阿里巴巴从事大数据优化器、Hadoop、MapReduce等核心算法的研究,参与阿里大数据平台框架创建,马晓东于2011年从阿里巴巴辞职进行大数据挖掘、可视化分析领域的创业,创建苏州国云数据科技有限公司,现任创始人兼CEO。
2011年,大数据还远没有2013、2014年的火热,甚至于无人问津,“2011年选择从阿里巴巴辞职去创业,基于哪些方面的考虑?”因此我采用了直白的开场,不绕任何弯路。
当时在阿里巴巴做的大数据平台只有阿里自己能用,应用效果特别好,马晓东认准未来市场需求很大,同时难度很大,而他在淘宝这一苛刻环境成功做过大数据挖掘,有这方面的经验;其二,希望更多人、更多的企业能够应用大数据分析和挖掘,尤其是个人、中小企业很多用不起或者根本没有意识到数据分析的真正价值,他也希望真正推动产业发展,实现数据分析工具的普及,就像windows系统现在普及和造福大众一样,因而大数据大数据魔镜系列的免费版本也因此而生,目前也已服务上万家用户;其三,马晓东在校期间就拥有一支100人的精深技术团队,多次得到国家级肯定,并获得李开复老师的青睐与支持,而几年的工作经历,整个团队在实力、视野上也已经成熟;其四,“我从骨子里就想做有价值的事情”,出身于经商世家的马晓东,有着做企业的梦想。
时至今日,马晓东对创业的经历依然不胜唏嘘。2011年,当时市场还处于热炒“云计算”的阶段,大数据甚至可以说是无人问津,而理工科出身的他,创业之路可谓不足为外人道。实在的性格让他在没做出成绩之前不愿去拿投资,而在做出一定成绩之后,大数据作为一个新名词、新领域,投资人对大数据的认知可谓云里雾里。同时2B市场比2C市场更难被人认知,企业级市场总体发展不好。
发展到近两年,在对比美国大数据市场之后,在美国企业级大数据企业陆续上市之后,业内才逐渐对大数据有所认识。很多企业认为大数据等于舆情处理,去做非结构化数据,但在美国市场,结构化数据已经成熟才开始研究非结构化数据,中国却处于后知后觉的状态,结构化的东西没做好就去做非结构化数据, 所以很多企业最终走向被淘汰。
国外大数据之所以领先国内市场,还在于国外有数据环境,只有真正见过大数据才知道怎么玩,这也是国内ERP、CRM很多,但真正的数据产品并不多的原因。“没见过大数据去玩大数据,玩得好不好就可想而知了”,而国云数据的成功正是得益于见识过阿里海量的数据、玩过阿里苛刻的数据处理环境。
见过大数据的国云数据相较于国外的同类企业,优势到底体现在哪?马晓东表示稳定性、容错能力、准确性是一个有价值的大数据产品的基本要素。而国云数据因为真正经历过大数据,在这三点远强大于其他产品,基于比同类产品更强大的三大因素,国云数据更是一个数据价值提炼平台,其优势体现于以下几点:首先是功能,别的商业智能有的功能全覆盖;其二性能,渲染速度是是IBM Cognos的25倍;其三是大数据处理能力,大数据魔镜具备探索式分析、自动建模、省50%计算能力、精准营销几大特色;其四是易用性,人人都可以进行数据分析挖掘。
对于当前企业大数据市场,马晓东认为相比于13、14年,今年的市场虽然处于低谷,但其发展前景更加乐观。之前的市场可以说是病态的火热,很虚,而当概念炒到低谷,随之就会趋于理性,进而产生做实事的企业。
“国内企业大数据市场尚处于起步阶段,企业的精力更应该放在提升产品价值、产业链合作,共同对抗国外大数据产品,而不应该放在内耗上。”
马晓东对大数据市场有着独特的理解,并将大数据企业分为三类:其一是拥有数据方,比如阿里、京东、政府等;其二是大数据的纵向应用,例如行业专家,做大数据分析咨询,此类门槛较低;其三是大数据的横向应用,此类门槛较高,相当于挖金子的工具。
而大众认知中的大数据企业更多的是第三类,大数据的横向应用。而在这一产业链又拥有众多分支:可视化、可视化大屏、大数据分析挖掘、工具、存储、数据传输采集等等。相较于美国市场,以上应用尚处于起步阶段,同时企业级大数据市场很大,兵戎相接的局势不会出现,企业更应该担心的是国外的搅局者。产业链上下游应合作共赢,建立健康生态,促进市场发展,将竞争目标瞄准国外产品。
“我们有一个愿景,让人人都可以数据分析,企业都能用得起大数据”。据悉国云数据即将推出“大数据魔镜标准企业版”,面向中小企业,10万+的配置标价1万元,完全颠覆市场,也对市面上国外工具狮子大开口式的圈钱策略做了一回反攻。不管结果怎样,相信很多因工具昂贵而放弃购买的中小企业迎来了数据春天。
对于2015年及未来发展规划,马晓东透露国云数据定位于工具厂商,并且专注于工具厂商,不会涉足其他链条,在加大工具研发的同时,拓展海外市场,不会过多内耗。同时国云数据在2015年的战略重点是合作共赢,希望能与产业链上下游加大合作,推进产业发展,让人人都会、都可以数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26