京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别急着用"大数据物联网"应对公共危机
发生在昨夜今晨的上海外滩踩踏事故,伤亡人数正在不断上升,事件的进展无时无刻不在撕扯着每一位看到消息的人的心。
类似踩踏事故在中国历史上绝对不是第一次发生,并且也很难乐观地估计这就是最后一次。之前的事故,有的发生在学校当中,有的发生在类似的场合。10年前,北京密云元宵灯会发生踩踏事故,死亡30余人,第二年同一地点继续举办大型活动。
我觉得看到事故发生就批评政府是很容易的,但是,如果说到以后该怎么办,始终也没有一个答案让所有人都满意。现在,互联网上同时充斥着两种声音:一种是质疑政府以及警方为什么明明知道跨年属于高风险活动依然动作迟缓,另一种声音则是害怕当局借着这起事件,直接取消跨年和春节庆典了事,甚至可能展开不知道针对什么领域的更严格管制。多种声音之间似乎是难以调和的。
作为科技从业者,我的朋友们试图通过科技的手段,来为日后这类问题的解决提供一些参考。比如有人提出,在人流密集场所可以使用大数据,动态视频监测,物联网等等功能的综合运用,来进行人流的监测和管控。但是我想指出的是,尽管这是站在了我们本职工作的立场上,但这的确不是重点。
早在完全没有这些技术的时候,中国也已经建立了行之有效的预案来进行危机干预。2008年是不会存在什么智能硬件,物联网,大数据这些东西的,当时甚至连微博都没有。但是我们国家依然办了一届“无与伦比”的奥运会,包括安保方面也是树立了一个新的标杆。
在需要的时间和地点,中国有能力处置任何形式的危机事态。如果重大活动是有预案的,那么处理起来就会更加得心应手。在北京奥运之后,中国又办了一系列的大型展会活动,这些活动无一例外地平安结束。
过去的一年,中国多地的确发生了由暴恐分子策划和实施的恐怖袭击。但是在这些袭击行动过后,受到波及的城市都加强了安保级别,当地民众也逐渐从阴影当中走出来,不再把袭击阴影当回事。这能够说明的问题就是,不管是跨年夜的踩踏事故,还是更严重的恐怖袭击,中国都是完全有能力预防和处置的。而危机的发生,只能说是当局没有足够重视起来的结果。
今天早上,我曾经试着比较过在上海、纽约和香港这三个比较典型的都市,人们过大型活动的时候,安保方面是否有值得注意的不同。
在上海外滩,纽约时报广场,香港的兰桂坊,这些地区的面积,高峰时的人数,以及具体安防力量和手段都各不相同,但非常明显的一点是,没有哪一个地方是明显落后于另两个地方的。跟世界其他任何地方比起来,中国在安保方面的努力和积累的经验都毫不逊色。
但上面这句话的前提是——中国一定要“认真”起来才行。如果因为要管的东西太多,根本就疏忽了,或者没有提高到应有的高度,只当做一般的公众活动处理,那就不行。从不同媒体的报道和亲历记录看,在悲剧发生前半个小时甚至更久,危险局面就已经出现。在其中的人们已经本能地意识到风险,然而此时的安保力量,跟几个月前的亚信峰会铁桶一般的警卫相比,却是如此孱弱。
在危机管控方面,有人非常准确地总结了长期以来的状况:“一抓就死,一放就乱”。在平时可能不太注意的场合,安保力量不会对局面有完全控制力,可能也没有分派足够的保安力量。但一旦局势失控,出了大问题,上升到特别重大的公共安全事件,事情就会完全不一样。一轮又一轮的责任追查下来之后,会在起码半年到一年的时间之内,让社会各界都绷紧安全这根弦,所有跟安全有关的部门如临大敌,直到危机迟迟不重演,人们再度松懈下来为止。
我们的政府在安保方面,就像进行其他关乎国计民生的工作一样,总是想要举全国之力,动员一切可以动员的力量。这样做当然时间短收效快,但是其负面作用是要“举国”的东西实在太多了,应接不暇,总有那么一些领域会被忽视,一直到出了不能视而不见的大问题,然后再次成为新的“举国”重点。
从根本上让安保“常抓不懈”,“警钟长鸣”,降低发生公共危机的几率和破坏程度的方法,就是充分将可下放的管理权限下放,把这些事情交给专业的机构来打理,让社会上真正有志于,也比较有能力解决公共安全问题的专业人士来处理。在按照订单保质保量的完成工作的同时,专业机构也应如同在政府内部一般,获得各种资源的使用权限。
去年,全球各地都有推动用民间力量助力政府进行公共管理的“开放政府”活动。在印尼雅加达,当地市政府公开了一些不涉密的动态信息API,如交管部门测得的车流量,气象局的详细天气数据等,鼓励民间开展编程比赛,创建第三方应用,改善政府网站的设置。香港有专门的非政府组织推动了香港天文台等政府部门的数据开放。
在中国大陆,由政府主导的“智慧城市”计划和企业联姻,一些企业贡献了云存储空间和技术手段,帮助政府升级办公平台。这样的经验,完全可以复制于包括安保在内的更多政府目前“大包大揽”的事务上。
等政府不像现在这么“日理万机”的时候,让专业的人来做需要专业能力的事,也许对安全真正“永不懈怠”的追求,就有达到的一天。而在此之前,我们每一个人能做到的最简单的行动就是——别去人多的地方。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22