京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别急着用"大数据物联网"应对公共危机
发生在昨夜今晨的上海外滩踩踏事故,伤亡人数正在不断上升,事件的进展无时无刻不在撕扯着每一位看到消息的人的心。
类似踩踏事故在中国历史上绝对不是第一次发生,并且也很难乐观地估计这就是最后一次。之前的事故,有的发生在学校当中,有的发生在类似的场合。10年前,北京密云元宵灯会发生踩踏事故,死亡30余人,第二年同一地点继续举办大型活动。
我觉得看到事故发生就批评政府是很容易的,但是,如果说到以后该怎么办,始终也没有一个答案让所有人都满意。现在,互联网上同时充斥着两种声音:一种是质疑政府以及警方为什么明明知道跨年属于高风险活动依然动作迟缓,另一种声音则是害怕当局借着这起事件,直接取消跨年和春节庆典了事,甚至可能展开不知道针对什么领域的更严格管制。多种声音之间似乎是难以调和的。
作为科技从业者,我的朋友们试图通过科技的手段,来为日后这类问题的解决提供一些参考。比如有人提出,在人流密集场所可以使用大数据,动态视频监测,物联网等等功能的综合运用,来进行人流的监测和管控。但是我想指出的是,尽管这是站在了我们本职工作的立场上,但这的确不是重点。
早在完全没有这些技术的时候,中国也已经建立了行之有效的预案来进行危机干预。2008年是不会存在什么智能硬件,物联网,大数据这些东西的,当时甚至连微博都没有。但是我们国家依然办了一届“无与伦比”的奥运会,包括安保方面也是树立了一个新的标杆。
在需要的时间和地点,中国有能力处置任何形式的危机事态。如果重大活动是有预案的,那么处理起来就会更加得心应手。在北京奥运之后,中国又办了一系列的大型展会活动,这些活动无一例外地平安结束。
过去的一年,中国多地的确发生了由暴恐分子策划和实施的恐怖袭击。但是在这些袭击行动过后,受到波及的城市都加强了安保级别,当地民众也逐渐从阴影当中走出来,不再把袭击阴影当回事。这能够说明的问题就是,不管是跨年夜的踩踏事故,还是更严重的恐怖袭击,中国都是完全有能力预防和处置的。而危机的发生,只能说是当局没有足够重视起来的结果。
今天早上,我曾经试着比较过在上海、纽约和香港这三个比较典型的都市,人们过大型活动的时候,安保方面是否有值得注意的不同。
在上海外滩,纽约时报广场,香港的兰桂坊,这些地区的面积,高峰时的人数,以及具体安防力量和手段都各不相同,但非常明显的一点是,没有哪一个地方是明显落后于另两个地方的。跟世界其他任何地方比起来,中国在安保方面的努力和积累的经验都毫不逊色。
但上面这句话的前提是——中国一定要“认真”起来才行。如果因为要管的东西太多,根本就疏忽了,或者没有提高到应有的高度,只当做一般的公众活动处理,那就不行。从不同媒体的报道和亲历记录看,在悲剧发生前半个小时甚至更久,危险局面就已经出现。在其中的人们已经本能地意识到风险,然而此时的安保力量,跟几个月前的亚信峰会铁桶一般的警卫相比,却是如此孱弱。
在危机管控方面,有人非常准确地总结了长期以来的状况:“一抓就死,一放就乱”。在平时可能不太注意的场合,安保力量不会对局面有完全控制力,可能也没有分派足够的保安力量。但一旦局势失控,出了大问题,上升到特别重大的公共安全事件,事情就会完全不一样。一轮又一轮的责任追查下来之后,会在起码半年到一年的时间之内,让社会各界都绷紧安全这根弦,所有跟安全有关的部门如临大敌,直到危机迟迟不重演,人们再度松懈下来为止。
我们的政府在安保方面,就像进行其他关乎国计民生的工作一样,总是想要举全国之力,动员一切可以动员的力量。这样做当然时间短收效快,但是其负面作用是要“举国”的东西实在太多了,应接不暇,总有那么一些领域会被忽视,一直到出了不能视而不见的大问题,然后再次成为新的“举国”重点。
从根本上让安保“常抓不懈”,“警钟长鸣”,降低发生公共危机的几率和破坏程度的方法,就是充分将可下放的管理权限下放,把这些事情交给专业的机构来打理,让社会上真正有志于,也比较有能力解决公共安全问题的专业人士来处理。在按照订单保质保量的完成工作的同时,专业机构也应如同在政府内部一般,获得各种资源的使用权限。
去年,全球各地都有推动用民间力量助力政府进行公共管理的“开放政府”活动。在印尼雅加达,当地市政府公开了一些不涉密的动态信息API,如交管部门测得的车流量,气象局的详细天气数据等,鼓励民间开展编程比赛,创建第三方应用,改善政府网站的设置。香港有专门的非政府组织推动了香港天文台等政府部门的数据开放。
在中国大陆,由政府主导的“智慧城市”计划和企业联姻,一些企业贡献了云存储空间和技术手段,帮助政府升级办公平台。这样的经验,完全可以复制于包括安保在内的更多政府目前“大包大揽”的事务上。
等政府不像现在这么“日理万机”的时候,让专业的人来做需要专业能力的事,也许对安全真正“永不懈怠”的追求,就有达到的一天。而在此之前,我们每一个人能做到的最简单的行动就是——别去人多的地方。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22