
图像视频大数据产业发展正当时_数据分析师
原先设计50多人规模的沙龙活动,结果报名参会者多达300余人。主办方不得不更改会议室,以便容纳陆续到来的参会者。
这是4月15日记者在中国科学院自动化所召开的“第二届中国图像视频大数据产业创新论坛”现场看到的情景。本次论坛由图像视频大数据产业技术创新战略联盟主办,中科院自动化所智能感知与计算研究中心承办。
“从参会人员的规模我们可以看出目前大家对图像视频大数据产业的关注。而这个论坛的召开,就是要为同仁们搭建平台,创造交流探讨的机会。”中国科学院院士、图像视频大数据产业技术创新战略联盟理事长谭铁牛在致辞中说。
大数据亟须转化为研究支撑
图像视频大数据是保障国家和公共安全的战略高技术、电子信息产业新的增长点,具有很大的发展潜力和广阔的应用前景。
专家介绍,预计到2017年,全球将有7万亿个传感器,届时如果按70亿人口的总量计算,人均将有1000个传感器。目前互联网图片的上传量每天多达数亿张。各种信息载体数据量的爆炸性突破造就了大数据的产生,人们的研究热情空前高涨。工信部发布的物联网发展规划明确提出要把图像视频智能分析以及海量数据存储、数据挖掘等作为关键技术创新工程。
“在全球图像视频数据爆炸式增长的今天,我国图像视频大数据产业迎来了重要的发展机遇,同时也面临重大挑战。”谭铁牛强调。
谭铁牛指出,经过多年发展,已经产生了海量的图像视频大数据。图像视频大数据是人工智能的突破口,是信息产业新的增长点。而能否把大数据优势转化为研究的支撑,不能光靠政府来解决。
据悉,图像视频大数据产业技术创新战略联盟希望团结、规范、引导我国图像视频大数据技术和产业的健康发展,以市场需求为导向充分发挥企业的主体作用,聚焦产业链创新,以技术项目研发为重点,健全组织机制,推进资源融合,建立利益共同体。
大数据产业应用蔚然成风
在该论坛上,百度研究院副院长余凯、北京航空航天大学教授李波分享了图像视频大数据产业的前沿科技和最新进展。论坛的两个讨论环节,则请到了14位企业、学术、投资等行业的专家学者,探讨图像视频大数据行业的商业模式、技术研发、产品设计、系统应用、标准测评的新方向、新动态、新挑战、新趋势。
论坛上,李波介绍,我们正处在“数字宇宙”中,2012年数据总量达2.84ZB,2014年数据总量达40ZB,他认为,数字应该为我们提供个性化、智能化的服务。
视频监控已经成为公安侦查的刚性需求,在传统线人、指纹、痕迹的基础上,视频监控成为公安第四大破案手段。视频监控破案占比已提高到25%~30%,并在不断提升。李波指出,99%的大案、要案的侦破需要视频监控信息。视频监控在公安侦查中价值重要,相关技术也在不断发展。
余凯以“从万物互联到万物智能”为题,介绍了百度在人工智能方面的发展成就。余凯称,人工智能不等于人工智慧,智能的本质是学习,是“感知—理解—决策”过程。5~10年后,所有设备都将成为智能设备(智能传感器、云端大脑、连接人与服务),都将成为机器人。
而数据银行的模式引起了与会者的高度关注。来自北京数据堂公司的代表介绍,该公司将各种大数据收集起来,就相当于成立了一个数据银行,对数据进行简单的“清洗”整理后,就可以向外提供数据出租等服务。
联盟引导产业健康发展
据介绍,我国图像视频大数据技术和产业发展正面临着诸多挑战,如政、产、学、研、用、资结合不紧密,企业和科研院所在国家层面的话语权较弱,自主创新较少,同质低价竞争普遍,国际化程度低,缺少权威平台以致市场无序竞争等。
为此,去年9月,图像视频大数据产业技术创新战略联盟在京成立。首批发起单位共29家,由百度、腾讯等19家企业,清华、北大等4所高校,以及中科院计算所、自动化所等6所研究院所组成。而今,“联盟在广大成员单位的支持和共同努力下,各项工作都在稳步向前推进,联盟的影响力也日益扩大。”谭铁牛说。
据介绍,联盟今后将致力于推动我国图像视频大数据产业技术创新、标准制定、测评认证、交流合作、宣传推广、人才培养,打造中国图像视频大数据领域政、产、学、研、用、资多赢的品牌产业平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30