
大数据“身体健康” 你我安心享用_数据分析师培训
导语:随着大数据时代的到来,“大数据”逐渐受到社会各界的高度关注,在社会管理、企业营销等方面都发挥出很大作用。但到底什么是“大数据”,很多人对此还有疑惑。同时,“大数据”被迅速广泛引用也引发人们对滥用的担忧。
什么是大数据?要准确说出个所以然来,对于大多数人来说恐怕难以做到。可这并不妨碍“大数据”成为近年来的热词之一。然而,在看似“高大上”的大数据包裹之下,其所隐藏的问题甚至是风险,已经到了不得不正视的时候。
简单说,大数据只是互联网时代基于海量信息搜集之上的一种数据分析方式,说白了就是一种工具,是一种方法论。对于国人而言,最早接触的“大数据”概念或许是历史学者黄仁宇所提出的“数目字管理”理念,大数据可以说是其加强版。那么,大数据必然能够让我们的生活变得更好吗?事实上,截至目前,并没有有效的证据表明数据的强度与特定部门生产力之间存在一定积极的联系。于此应该明白,对于作为新生事物的大数据,实在不必过于迷恋,更不能将之视为“无所不能”的神器。
事实上,大数据概念的走红,本身就不乏浮躁之气。一方面,互联网加速进入web2.0时代,各行各业都被裹挟其中,包括互联网企业在内的诸多领域都渴望迅速抢滩发展先机,而大数据被视为“互联网化”的标志,成为各方争宠的“香饽饽”;另一方面,大多数行业对于互联网的利用还处于起步阶段,竞争的同质化、手段的单一化,都导致对于大数据的过度依赖与迷恋。此种“乱战”背景下,大数据在现实中的异化或“虚假繁荣”的风险,就大大提升,甚至是噱头大于实质、标榜大于实践。
如果说大数据被概念化虚夸或只是阶段性现象,那么,其被滥用所带来的实质伤害,从一开始就更应该被加以重视与防范。对此,《大数据时代》作者维克托·迈尔·舍恩伯格曾在演讲中提醒,“大数据一方面有很多好处,可以改善学习,但也可能被滥用在不恰当的地方,值得警惕。”譬如最显而易见的是,不是所有的社会领域都适合作数据式的定量分析,如果将之全盘数据化,既难以实现预期的研究目的,还将误导社会与公众,产生不良的社会影响。
较之于滥用带来的“失真”,大数据运用可能增加的信息安全风险,更与每个人息息相关。随着互联网的普及,个人隐私的威胁其实早就成为公认的担忧。现实中已不乏具体的案例。比如2013年,国内安全漏洞监测平台乌云发布报告,称如家、汉庭等大批酒店的开房记录被第三方存储,并且因为漏洞而泄露。而大数据兴起,各领域的信息需求大大增加,如果不能将信息搜集纳入合法框架之内,受到法律约束,那么大数据时代也可能成为公民个人信息安全保护“最坏的时代”。
大数据作为互联网时代的一项信息处理方式,本身不具备任何原罪,如何平衡利弊,在根本上仍取决于每一个参与者自身。譬如,个人提高信息保护意识,相关部门加快信息安全保护的立法,都是必要之举。
评论:
总而言之,我们既不能沦为大数据的奴役,片面夸大其效用,陷入数字崇拜,更不能以牺牲信息安全的代价去为实现憧憬中的“大数据时代”铺路。否则,我们所追求的就只是“带病”的大数据,与利用大数据的初衷背道而驰。必须保障大数据的健康,我们才能安心享用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29