
Yahoo的大数据分析的个人化应用_数据分析师培训
大数据(Big Data)近年来已成为市场关注焦点,为了能够发掘大数据的商业价值,在基础建设已经渐渐完备,数据搜集及储存能力已然成熟的环境下,大数据应用的探索焦点,已逐渐从数据技术与系统的讨论,逐渐转移到数据的分析与各领域的深化应用。
如目前的入口网站早已是许多人日常生活不可或缺的服务提供者,透过使用者在使用入口网站服务的行为分析,业者不但可以更进一步地提供个人化推荐服务,还可能为相关业者找到更多的商机。
但并非所有的数据都能产生价值,必须透过很多生态系统搭配组合,才能产生用户所需要的资讯。
大数据已成市场关注焦点。数据的确需要去开采,也需要技术及工具,但技术及工具也可能会用错或浪费资源,所以技术人员不能只看技术,而是要去理解数据真正的价值所在。
如健康照护服务及定位数据如果加以混搭,虽然可以提供更进一步的价值,但如何说动使用者开放或分享,其实需要更细致的说服过程。此外,大数据分析所呈现的世界,客户需求会更加清晰,但市场区隔也会变小,产品及服务必须要更加客制化。
随着无线网路、行动装置及物联网的时代来临,人与物的连结将变得更加多样化,也创造出更多各类型的数据,如何管理、维护及分析这些数据,并将正确分析的结果即时传给正确的使用者,创造更多的商业价值,势必将成为企业未来非常重要的竞争力,大数据分析的价值,值得加以重视。
大数据分析的个人化应用
网际网路基础建设渐趋成熟,加上行动装置的便利性及普及,让许多人的日常生活行为,已经离不开网路,其中又以入口网站接触到的使用者最多,也成为大数据的最主要来源。
如Yahoo提供的诸多服务,如电子信箱、购物、新闻、理财等,都可以追踪到消费者的足迹,加上使用者其他的网路使用行为如点击广告等,以及全球每月可收集超过16亿只智慧型手机及平板电脑上的使用者行为,如何进一步分析这些个人化应用,已成为重要议题。资讯及选择太多,其实也是大数据分析所遭遇的一大难题,以Yahoo所能追踪的消费者使用足迹为例,就会发现其实跟一般官网可以追踪的足迹不太一样,由此也可知,大数据与一般数据其实仍有差别,不能用同样的思考或方法来分析。
大数据具有5大特性,包括数据量(volume)、速度(velocity)、多样性(variety)、易变性(variability)及真实性(veracity)。其中数据量、速度及多样性这3项是一般较常用来评估大数据的标准。
由于使用者平日在网路的应用习惯,举凡使用搜寻引擎、即时通讯、看影音节目、气象、听音乐、购物、社群活动、上传相片、电邮及阅读新闻,Yahoo都有提供对应的服务,其中光是使用者接触到的媒体内容、电子商务及数位行销广告的使用行为分析,就可以产生非常大的商业价值。在分析大数据时,Yahoo一定会做好个人隐私保护,只有行为数据才是真正可以分析的行为。例如,光是早餐的麦片种类就超过70种,往往会造成消费者选择的困扰,但如果透过适当的使用者经验分析,就能提升使用者的正面体验。
以一个小资女班族的日常生活为例,早上在搭捷运上班途中,打开手机看新闻,透过大数据分析,就会优先提供这位使用者平常阅读的影剧新闻、近期因为想要旅游而常关注的旅游文章,以及最近热门浏览的财经新闻。
透过大数据分析使用者行为,也能让使用者得到更多相关资讯。如使用者在点击购物中心84折运动的资讯时,网站就会提示使用者之前看过的那些商品,其实也适用此活动。
甚至在使用者因为点选了广告推荐的日本秋季赏枫行程,个人化推荐模组就会显示超级商城的冬季新装长大衣,或是日本零食、美妆等商品资讯。而且当使用者下班后经过药妆店时,超级商城App也会提供有限定商品折扣的讯息,而且凭App产生的条码,到店购买就可享有第二件7折优惠。
Yahoo首页每天分析超过1亿个以上的网路使用行为,才能提供使用者最感兴趣的互动,而且使用者的网路使用行为愈多,Yahoo提供的资讯也会愈精准。
而对厂商而言,精准行销广告本来就会有提高广告投资效益的效果,如果能根据使用者行为,在首页出现相关的广告,或提示相关的行销活动,抓到使用者的需求,销售将会成倍数成长,尤其是个人化模组的促销量,效果又会比网站推荐模组的效果更好。
针对电子商务,Yahoo台湾团队自主研发演算法与归纳消费者行为模式进行分群,透过数百群产品推荐模组,提供更优质的个人化服务,让购物中心来自个人化推荐模组的业绩显着增加。电子商务方向的大数据分析经验,发现使用者对于即时性的要求很高,也就是说,使用者的任何行为,要在10几分钟后就能完成分析,提供进一步的建议。
要做到前述的使用者行为分析,其实需要各种数据分析技术支援,如分析消费者各类行为与需求的预测模型,也要有能力即时侦测互动事件,并回馈产生最佳的个人化服务内容,而具备一个能够从互动产生的大数据中,快速地搜集、储存、撷取、汇整与计算的大数据分析平台,更是其中的关键要素。
大数据分析平台的运作过程,必须先要有数据来源,然后透过Hadoop、Shark及SQL等技术,很快地完成数据分析处理,最后再将结果储存并展示在使用者的面前。此外,大数据要做到个人化分析应用,科学建模(Science Modeling)的重要性不言可喻,科学建模依据的数学或科学理论,透过雅虎的实际工程(Practical Engineering)及适应学习(Adaptive Learning)能力,可以具体实践出成果。大数据分析要做到个人化应用,批次讯号及即时讯号的分析技术,两者无法相互替代,必须相辅相成,再透过分群数据技术及个人化引擎,最后才能提供为使用者个人量身订做的专属建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27