
管理一个庞大的计算系统并不是件容易的任务,但是通过更好的管理和适宜的规划能减少工作的繁琐和麻烦。虽然你可能无法实现期望中的尽善尽美,但你可以改变数据中心管理的方法。以下是数据中心管理中应该避免的十大错误,大家不妨参考一下自己有没有类似问题。
1.虚拟化部署不足
如果你管理的数据中心还没有部署虚拟化来节约金钱,那么显然你是落伍了。虚拟化技术能帮助你节约寸土寸金的机架空间。虚拟化还可以为那些不存在系统节约额外的制冷,能耗和服务费用。
2.没有使用云计算
与虚拟化技术类似,云计算要求你掌握公司或者用户的实际能力。亚马逊在线能提供适合随需能力需求的灵活性和扩展性。举例来说,使用Canonical公司的Ubuntu Linux Server Edition,你可以创建自己的私有云或者动态调整亚马逊在线的弹性计算云。不过现在云计算还是处于盲人摸象状态。
3.设计缺陷
数据中心的设计缺陷很难被避免,但是重新设计要比重头再建要便宜的多。一座有20年历史的数据中心看起来依然光鲜,但是已经不再符合当下的环保标准。你必须重新设计数据中心的电力设备来满足刀片系统的需求。你可能还得重新更换老化的制冷系统等,因为当下的服务器比他们上一代产品的制冷环境要求更高,效率也更高。
4.扩展性局限
"640K的随机存储器对于任何人来说都足够了"我们无数次听到据说是比尔.盖茨这样的言论,那大概是1981年吧?无论比尔.盖茨是否说过这样的话对今天而言都已经不再重要了。我们需要吸取的教训是当你构建数据中心时,要将摄氏温度调整为华氏温度:这样你考虑的数量就翻倍了。使用从摄氏到华氏温度的公式能为你的数据中心预留将来升级的空间。一座占地面积2000平方英尺的数据中心不够吗?应该有4032平方英尺取而代之。规划不足毫无疑问会浪费占地空间或者其他能力。
5.安全性放松
进入任何数据中心,你都会看到读卡器,视网膜扫描仪,循环锁,称重仪或者其他高科技安全系统。但是与那些严密的安全措施相比,你会发现一些关键的安全访问入口被绕过了。物理安全没有岔路可走。如果存在这种岔路,你的安全性就会大打折扣。
6.服务器管理偶发性
为了管理你的服务器系统,你需要物理访问或者远程进行管理吗?时下每台服务器系统在维护上通常都是用远程管理系统来完成。使用和激活亦是如此。对于每个进入数据中心的人来说,你可以会遭遇系统故障。错误的系统标识,错误的定位,误读的系统名等等。如果你配置物理系统时可以使用远程访问控制台就好的多。
7.整合遭遇问题
开展数据中心管理业务就是要最大化的减少机架或者机房内系统的数量。服务器整合就是实现这个结果的解决方案.2:1或者3:1的整合比例都是无法接受的。5%到20%利用率范围运作的物理系统可以轻松的将5台,6台或者更多的服务器整合到一台系统上。没有得到充分利用的系统会浪费机架空间,能耗和服务支持的费用。
8.过度冷却或者不够冷却的空间
你的数据中心温度是多少?你应该检查一下。如果你的数据中心温度在70华氏度以下,你就是在浪费金钱。服务器需要的空气流动超过他们对冷却温度本身的需求。在你的数据中心巡视一番。如果你感觉舒适,那么服务器感觉也比较舒适。没必要非得让你的数据中心员工感觉过冷或者过热。
9.动力不足的设备
关于数据中心有空间可用却动力不足的话题你听说过多少次了?动力不足的设备是规划不足的牺牲品。虚拟化会对此有所帮助。服务器整合也能起到一定作用。但是未充分利用的设备在短期内是比较突出的问题。
10.机架过于拥挤
如果你曾经尝试将服务器把机架挤的满满当当,你可能奢望自己成为万能的。你可能认为在系统之间留有间隙会导致低效和浪费,但是那些从事从系统中插入或者拔出组件工作的人可能要感谢你了。匮乏的规划会导致系统过度拥挤,这是没必要的。虚拟化,整合和更加高效的安排会缓解这个问题。服务器偶然的电源松懈导致的断电会让你明白在系统之间留一些间隙是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16