京公网安备 11010802034615号
经营许可证编号:京B2-20210330
管理一个庞大的计算系统并不是件容易的任务,但是通过更好的管理和适宜的规划能减少工作的繁琐和麻烦。虽然你可能无法实现期望中的尽善尽美,但你可以改变数据中心管理的方法。以下是数据中心管理中应该避免的十大错误,大家不妨参考一下自己有没有类似问题。
1.虚拟化部署不足
如果你管理的数据中心还没有部署虚拟化来节约金钱,那么显然你是落伍了。虚拟化技术能帮助你节约寸土寸金的机架空间。虚拟化还可以为那些不存在系统节约额外的制冷,能耗和服务费用。
2.没有使用云计算
与虚拟化技术类似,云计算要求你掌握公司或者用户的实际能力。亚马逊在线能提供适合随需能力需求的灵活性和扩展性。举例来说,使用Canonical公司的Ubuntu Linux Server Edition,你可以创建自己的私有云或者动态调整亚马逊在线的弹性计算云。不过现在云计算还是处于盲人摸象状态。
3.设计缺陷
数据中心的设计缺陷很难被避免,但是重新设计要比重头再建要便宜的多。一座有20年历史的数据中心看起来依然光鲜,但是已经不再符合当下的环保标准。你必须重新设计数据中心的电力设备来满足刀片系统的需求。你可能还得重新更换老化的制冷系统等,因为当下的服务器比他们上一代产品的制冷环境要求更高,效率也更高。
4.扩展性局限
"640K的随机存储器对于任何人来说都足够了"我们无数次听到据说是比尔.盖茨这样的言论,那大概是1981年吧?无论比尔.盖茨是否说过这样的话对今天而言都已经不再重要了。我们需要吸取的教训是当你构建数据中心时,要将摄氏温度调整为华氏温度:这样你考虑的数量就翻倍了。使用从摄氏到华氏温度的公式能为你的数据中心预留将来升级的空间。一座占地面积2000平方英尺的数据中心不够吗?应该有4032平方英尺取而代之。规划不足毫无疑问会浪费占地空间或者其他能力。
5.安全性放松
进入任何数据中心,你都会看到读卡器,视网膜扫描仪,循环锁,称重仪或者其他高科技安全系统。但是与那些严密的安全措施相比,你会发现一些关键的安全访问入口被绕过了。物理安全没有岔路可走。如果存在这种岔路,你的安全性就会大打折扣。
6.服务器管理偶发性
为了管理你的服务器系统,你需要物理访问或者远程进行管理吗?时下每台服务器系统在维护上通常都是用远程管理系统来完成。使用和激活亦是如此。对于每个进入数据中心的人来说,你可以会遭遇系统故障。错误的系统标识,错误的定位,误读的系统名等等。如果你配置物理系统时可以使用远程访问控制台就好的多。
7.整合遭遇问题
开展数据中心管理业务就是要最大化的减少机架或者机房内系统的数量。服务器整合就是实现这个结果的解决方案.2:1或者3:1的整合比例都是无法接受的。5%到20%利用率范围运作的物理系统可以轻松的将5台,6台或者更多的服务器整合到一台系统上。没有得到充分利用的系统会浪费机架空间,能耗和服务支持的费用。
8.过度冷却或者不够冷却的空间
你的数据中心温度是多少?你应该检查一下。如果你的数据中心温度在70华氏度以下,你就是在浪费金钱。服务器需要的空气流动超过他们对冷却温度本身的需求。在你的数据中心巡视一番。如果你感觉舒适,那么服务器感觉也比较舒适。没必要非得让你的数据中心员工感觉过冷或者过热。
9.动力不足的设备
关于数据中心有空间可用却动力不足的话题你听说过多少次了?动力不足的设备是规划不足的牺牲品。虚拟化会对此有所帮助。服务器整合也能起到一定作用。但是未充分利用的设备在短期内是比较突出的问题。
10.机架过于拥挤
如果你曾经尝试将服务器把机架挤的满满当当,你可能奢望自己成为万能的。你可能认为在系统之间留有间隙会导致低效和浪费,但是那些从事从系统中插入或者拔出组件工作的人可能要感谢你了。匮乏的规划会导致系统过度拥挤,这是没必要的。虚拟化,整合和更加高效的安排会缓解这个问题。服务器偶然的电源松懈导致的断电会让你明白在系统之间留一些间隙是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15