京公网安备 11010802034615号
经营许可证编号:京B2-20210330
管理一个庞大的计算系统并不是件容易的任务,但是通过更好的管理和适宜的规划能减少工作的繁琐和麻烦。虽然你可能无法实现期望中的尽善尽美,但你可以改变数据中心管理的方法。以下是数据中心管理中应该避免的十大错误,大家不妨参考一下自己有没有类似问题。
1.虚拟化部署不足
如果你管理的数据中心还没有部署虚拟化来节约金钱,那么显然你是落伍了。虚拟化技术能帮助你节约寸土寸金的机架空间。虚拟化还可以为那些不存在系统节约额外的制冷,能耗和服务费用。
2.没有使用云计算
与虚拟化技术类似,云计算要求你掌握公司或者用户的实际能力。亚马逊在线能提供适合随需能力需求的灵活性和扩展性。举例来说,使用Canonical公司的Ubuntu Linux Server Edition,你可以创建自己的私有云或者动态调整亚马逊在线的弹性计算云。不过现在云计算还是处于盲人摸象状态。
3.设计缺陷
数据中心的设计缺陷很难被避免,但是重新设计要比重头再建要便宜的多。一座有20年历史的数据中心看起来依然光鲜,但是已经不再符合当下的环保标准。你必须重新设计数据中心的电力设备来满足刀片系统的需求。你可能还得重新更换老化的制冷系统等,因为当下的服务器比他们上一代产品的制冷环境要求更高,效率也更高。
4.扩展性局限
"640K的随机存储器对于任何人来说都足够了"我们无数次听到据说是比尔.盖茨这样的言论,那大概是1981年吧?无论比尔.盖茨是否说过这样的话对今天而言都已经不再重要了。我们需要吸取的教训是当你构建数据中心时,要将摄氏温度调整为华氏温度:这样你考虑的数量就翻倍了。使用从摄氏到华氏温度的公式能为你的数据中心预留将来升级的空间。一座占地面积2000平方英尺的数据中心不够吗?应该有4032平方英尺取而代之。规划不足毫无疑问会浪费占地空间或者其他能力。
5.安全性放松
进入任何数据中心,你都会看到读卡器,视网膜扫描仪,循环锁,称重仪或者其他高科技安全系统。但是与那些严密的安全措施相比,你会发现一些关键的安全访问入口被绕过了。物理安全没有岔路可走。如果存在这种岔路,你的安全性就会大打折扣。
6.服务器管理偶发性
为了管理你的服务器系统,你需要物理访问或者远程进行管理吗?时下每台服务器系统在维护上通常都是用远程管理系统来完成。使用和激活亦是如此。对于每个进入数据中心的人来说,你可以会遭遇系统故障。错误的系统标识,错误的定位,误读的系统名等等。如果你配置物理系统时可以使用远程访问控制台就好的多。
7.整合遭遇问题
开展数据中心管理业务就是要最大化的减少机架或者机房内系统的数量。服务器整合就是实现这个结果的解决方案.2:1或者3:1的整合比例都是无法接受的。5%到20%利用率范围运作的物理系统可以轻松的将5台,6台或者更多的服务器整合到一台系统上。没有得到充分利用的系统会浪费机架空间,能耗和服务支持的费用。
8.过度冷却或者不够冷却的空间
你的数据中心温度是多少?你应该检查一下。如果你的数据中心温度在70华氏度以下,你就是在浪费金钱。服务器需要的空气流动超过他们对冷却温度本身的需求。在你的数据中心巡视一番。如果你感觉舒适,那么服务器感觉也比较舒适。没必要非得让你的数据中心员工感觉过冷或者过热。
9.动力不足的设备
关于数据中心有空间可用却动力不足的话题你听说过多少次了?动力不足的设备是规划不足的牺牲品。虚拟化会对此有所帮助。服务器整合也能起到一定作用。但是未充分利用的设备在短期内是比较突出的问题。
10.机架过于拥挤
如果你曾经尝试将服务器把机架挤的满满当当,你可能奢望自己成为万能的。你可能认为在系统之间留有间隙会导致低效和浪费,但是那些从事从系统中插入或者拔出组件工作的人可能要感谢你了。匮乏的规划会导致系统过度拥挤,这是没必要的。虚拟化,整合和更加高效的安排会缓解这个问题。服务器偶然的电源松懈导致的断电会让你明白在系统之间留一些间隙是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03