
如何利用大数据思维在北京租到好房子_数据分析市场培训
第一步:精准定位。
确定找房地点,精确到小区。每个小区在任意时间,至少有三五间空房待租。大的小区,有几十间。完全不要担心没房。如果没有,基本是因为数据挖掘的能力不足。五环之内,如果两个毗邻的小区都没有空房,中国经济就要出大问题了。但一个小区的数据少,是很常见的。所以,我一般至少收罗4个小区的数据。
比如,我在凤凰网上班,要到市区,就会选择在地铁站和单位沿线的小区。
凤凰网到望京地铁站3公里,步行30分钟。
最理想的小区是A,其次是B、C、D。
第二步:数据挖掘。
这一步是个技术活,很关键。技术体现在你依据哪些指标进行挖掘。
我总结个口诀,叫“四看四不看”。
四看:看小区、看价位、看个人、看户型。
1、看小区。不要以地铁站诸如“望京”来搜索,要定位精准。
2、看价格。价格没有太多回旋的余地。在北京,五环左右和别人合租,单间的价钱基本不会超过2000。望京一带,单间基本是1500到2000。低于1500的条件不好,高于2000的又偏贵。
3、看个人房源。“100%个人房源”都会碰到中介。不要对中介寄予任何希望。但可以利用中介,就是在个人房源实在找不到的时候,找中介带你看一两家,熟悉一下行情。别看太多,因为人家中介挣钱也不容易。既然不打算走中介,别太麻烦人家。
4、看户型。户型数据未必真实。有些三室一厅的,客厅被隔断,住6家。我看到4室的基本不考虑。除非数据实在不够,也会抄上备用。合租人多会出现极大的麻烦,没人会主动倒洗手间的厕纸。而收水电费时有人拖欠不交就更让你苦恼了。
四不看:不看照片。不看设施、不看装修、不看面积。
1、不看照片。“有图有真相”这句话在两种地方万万不能相信,一种是租房网站上,一种是女生朋友圈自拍。记住,一定要看现场。照片拍得天花乱坠,没有用。
2、不看设施。不要去比较写的有空调没空调,有些有空调,但可能根本不制冷了。有些没空调,纯粹因为房主忘写了。
3、不看装修。中等装修、装修很好,这些描述太主观。很多冒充二房东的中介,把破烂的房子写成中等装修。
4、不看面积。同样大小的房子,有人写15平,有人写28平。一样主观。
你都大数据了你还相信主观描述么?一切以现场为准。看主观信息纯粹是浪费时间。
明确了“四看四不看”,半小时你就能找到一堆数据,格式如下:
第三步:剔除无效数据。
上一步挖掘到的数据,有三种是无效的,一种准有效的,一种有效的。
无效数据:
1、电话打不通的。
2、中介冒充个人的。
3、房子已租出去的。
准有效数据:
1、房子还没租出,但人不在家。
有效数据:
1、人在,现在可以看房。
这一步需要到了现场再开始实施。不要边挖掘数据边打电话。只要你的数据样本足够多,不怕不存在有效数据。而且,你先打电话约好时间,到了地方,人可能又不在了。所以,到小区再打电话,然后开始批量剔除。
不好意思,纸片装在裤兜里,天热出汗,就成这熊样子了。
每当你划掉一道线时,心里就多了一分成就感。
第四步:周边调研。
工作日最好下午出发,但做好下午看不到合适房子的准备。因为有正经职业的人,白天基本都在上班。你碰到的很可能是假冒二房东的中介,或者是没有正经职业的。和这些人合租可能会遇到很多问题。比如大白天趁你不在带了一堆狐朋狗友来家里,搞不好在家里吸毒你都不知道。
那下午出发的意义是什么呢?热身。
顺便在小区看看风景。当你时间太急迫的时候,就不会留意小区设施风景、周边吃的玩的和商场多不多,交通是否便利这些了。不要以为这些不重要。越是着急找房子,越不能粗疏。节奏一定要对。急中有缓,由缓而速。
每个小区都有一群群中介。他们走过你身边时,一定要把纸揣好了。让自己像个特务一样,装作若无其事地看大妈跳广场舞。一边看,一边拨出电话。这时,只见一个大妈从广场舞队伍里溜出来了。没错,白天不上班的,不一定是中介,还有可能是退休的房东大妈。
别从位置最优的小区开始。这样,即便看到好房子,你还会对下家有期待。如果先看位置最优的小区,你可能一激动就拍板决定了,这样很容易错失更舒服的房子。
第五步:现场勘查。
不要预设。一定要找带空调的,一定要找有电梯的——太陋(low)了。
记住,你是在用大数据思维找房子,还能提出以上标准吗?
以下指标才是合适的:
1、要木地板,不要地板砖。
地板甚至比电视、空调还重要。卧室是木地板,或者看着像木地板的话,你回到家会感觉很放松,如果是地板砖,就给人一种冰冷的感觉,还像在办公室里。
2、要有客厅,不要隔断。
哪怕你不住隔断,也不要租带隔断的房子。有隔断就意味着没有客厅。有大客厅,基本上就有沙发,沙发前边基本就有电视,甚至还有大阳台。没有客厅的话,你的空间就只剩下卧室了。
3、窗户朝南,要无遮挡。
休息日你可以看到大把的阳光毫不吝惜地照进来。这一点对于好心情非常重要。如果你的窗子朝西或者朝北,或者有高楼遮住了你一半的视线,或者窗户太小,你就不会太开心。脑补一下吧:大冬天的周末,睡到十点,拉开窗帘,满室生春,泡一壶茶,站在窗前,远远近近的风景尽收眼底。你顿时爽了。
4、要大床,除非你受了八关斋戒。
广场舞大妈说她只让正经人住,你要不正经她还不租给你呢,然后一个劲儿地夸自己的房子有多么好。但你还是看出一些弊端,比如卧室没有床,只有一张小床垫。——大妈不会聪明到为了把房子租个好价钱而特地买个大床,她不知道,如果她买张大床,很多人愿意多出200块钱把这房子租下来,押一付三,增加的租金立刻抵消了大床的成本。可见,把数学应用在生活中有多么重要。
第六步:运筹帷幄。
当你现场看过的房子数据比较充裕时,就会追求卧室里是不是有书架、洗手间是不是通风良好这样的指标了。达到这个水平时,再看两三家就够了。
看到再好的房子,也别当场定下来。一时的感觉有可能是假相。尤其是在你看了超过十间房时,你已经分不清哪间是哪间了。你可能看一间觉得满意,看到下一间又觉得满意。这时,你需要问一问房东,能不能拍张照片。告诉她你要多比较两家,这样,她还会自动给你压低房租。不然,她会以为你不是一个人来住。当然,你也可以告诉她你是发给你妈看,但那样似乎有点丢人,毕竟你都三十岁了。
通情达理的房东一般都不会拒绝你。拒绝你的房东,你要考虑是不是要住在这里,因为和他们的相处恐怕容易起芥蒂。要求拍照片是检验房东性情的好办法。
拍了十多家房间的照片,就可以去吃饭了。因为你饿了。找一家麦当劳或者肯德基吧,可惜肉全没有了。你痛恨自己累了一下午还不能吃饱。但要记住,你此行的目的是找房子,不是吃。
要一杯饮料。把看过的房子一一列在纸上,打开照片,比较其优劣。你假如会用SWOT分析法更好,PEST就不用了,装逼也需要有限度。
然后,你就得到一张近似下图的列表。
先排除一半,再从未排除的选项里选优,就确定了一个候选房。
别着急,你还需检验一下它是否有效。不必做robust检验,只需在你未曾涉足的小区观察两套房有个比较就行了。一般不会优于之前的最优解。
然后,你打电话给最优解姐姐。交了定金,就可以愉快地打道回府了。
你共拨了40多通电话,逛了5个小区,看过16间房。加上吃饭,花了5个小时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04