
大数据日志分析的成功取决于机器学习_数据分析师培训
各种设备产生数量庞大的日志数据为深入了解它们创造了巨大可能,但为更透彻理解,机器学习十分必要。
机器生成的日志数据就像大数据宇宙的暗物质,在每一层,每一节点产生,然后在包括智能手机和互联网终端在内的分布式信息技术生态系统中生成。它们被收集,处理,分析和广泛使用,但大多时候,这些都发生在幕后。
日志数据对许多微型企业应用起到很基础的作用,如故障排除,调试,监控,安全,反欺诈,法规遵从和电子发现。然而,它也可以成为一个强大的工具,以用于分析点击流,地理空间,社交媒体,以及许多以客户为中心的使用情况等记录相关的行为数据。
机器学习能浮动大数据海洋上所有船只。
人类很难跟上机器记录数据,在设计之初,它们就没打算供人类直接分析。除非注入非凡效率,日志数据的高量,速度和品种可以迅速压倒人的认知。埃森哲撰写的最近这篇文章对此解释简明扼要:
日志文件的数量和种类日益上升,因此,管理和分析它,跟踪潜在的问题,发现错误–尤其当跨数发生关联时,都变得越来越困难。即使在最好的情况下,它仍需要一个有经验的操作人员遵循事件链,滤除噪声,并最终诊断出一个复杂的问题的根本原因。
显然,自动化是深入了解日志数据的关键,因为日志数据在大数据领域里成规模分布。自动化可以确保数据的采集,分析处理,同时,它对数据的显示结果规制和事件驱动的履行和数据流一样高速。日志分析自动化主要引擎包括机器数据集成中间件,业务规则管理系统,语义分析,数据流计算平台和机器学习算法。
其中,机器学习对于日志数据深入了解的自动化和精华甄选最为关键。但是,机器学习并不对于所有记录数据都完全准确的分析方法。不同的机器学习适合于不同类型的日志数据,用于不同的分析挑战。当寻求相关性或其他模式时可通过机器学习先验,而要进一步探索,监督学习则为上策。然而,监督学习需要人类专家从日志中准备一个培训数据的设置,以改进机器学习算法,使它们具有与辨别最相关的模式的能力。
但是,如果不能对日志数据模式提前精确定义,无监督和强化学习可能更合适。它们由机器学习提供,帮助日志数据分析方案最大化适合于全自动化,因为它们可以挑选出并优先最相关的模式,进行手头的任务,而不需要增设人类额外操作的培训数据设置。
多样相关性是用与无监督和强化学习的核心日志数据分析使用案例。当多样的日志数据被合成,最终它们合成,变得更异质的,复杂莫测,最有趣的数据也发生变化,这种关系完全不能被清楚地预先分析。因此,如果我们只是尝试使用简单的查询、预先存在的报表和仪表盘,以及其他标准分析视图进行查看,隐藏的模式可能仍然不可见。在这些情况下,机器学习可以提供各种显著的量化方法对此进一步探讨,例如聚类,马尔可夫模型,自组织映射等等。
另一个无监督学习和强化学习的关键应用是识别要么从未发生过或者除了被认定为杂音外从来没有被标记过的那些显著模式。文章作者讨论了一款假定的机器学习的安全日志分析应用程序,它可以“立即为用户发现非典型访问模式,即使这种特殊访问模式此前从未出现,他也能力及识别,这样就可以防止特别是私人信息的高风险损失。
许多对海量日志数据最具破坏性的见解都具有这种特质:复杂,死气,前所未有。从日志数据本身而不是从任何先验知识可知,将有许多数据科学家花费大量的时间去研究。他们将越来越多地调整自己的机器学习算法来监听日志中夹带的那些即使是最先进的人类主题专家此前也曾忽视了的“信号”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29