
拥抱大数据 加快医疗信息化建设_数据分析师
3月25日,国务院总理李克强主持召开国务院常务会议,确定今年深化医药卫生体制改革重点工作。会议强调,要建立医疗信息化系统,推动异地就医即时结算。医疗信息化建设在深化医药卫生体制改革工作中越发重要,医疗信息化建设的最终目的是使得医疗卫生相关数据在法规要求下实现数据的互联互通、信息共享,改变“信息孤岛”的现状,更好地支撑医疗卫生事业的发展。
当前我们正处于一个数据爆炸性增长的大数据时代,各类信息系统在医疗卫生机构的广泛应用以及医疗设备和仪器的逐步数字化使得医院积累了更多的数据资源,这些数据资源是非常宝贵的医疗卫生信息,对于疾病的诊断、治疗、诊疗费用的控制等都是非常有价值的。如何在大数据时代做好医疗卫生信息化建设,是值得我们思考的问题。
一、中国医疗信息化建设现状
中国医疗信息化建设从1998年开始,1998年国务院决定建立城镇职工医疗保险制度,医疗卫生机构需要对计价、收费、住院管理等流程进行信息化,并实现与医保结算系统的对接,医院开始建设以收费为中心的初级HIS系统,中国医疗信息化建设开始起步。2008年中国开始深入推进医药卫生体制改革,在医药卫生体制改革中确认的新医改“四梁八柱”体系中,信息化是唯一的技术支柱,医疗信息化从而进入了快速发展期。
2008年至今6年时间里国家出台多项政策推动医疗信息化建设,包括:医疗卫生信息化“十二五”规划、基层医疗信息系统建设指导意见、中医药信息化建设“十二五”规划、健康中国2020等,这些政策的出台使得医疗信息化建设步入快车道。根据赛迪顾问数据,2013年中国医疗行业IT应用整体投资规模突破300亿元。
图1 2009-2013年中国医疗行业IT应用市场规模与增长
在这一过程中IT技术发展日新月异,新兴IT技术开始渗透并影响医疗卫生领域,为医疗信息化建设带来新的气息,特别是大数据相关技术在其中发挥了重要作用。
二、大数据时代对医疗信息化建设新要求
据估计,中国一个中等城市(100万人口)50年所积累的医疗数据量就会达到10PB级别。随着我国医疗信息化建设加快,医疗卫生数据量爆发式增长,医疗卫生领域已迎来了自己的“大数据时代”,大数据相关特性对医疗信息化建设提出了新的要求。
(一)数据量爆发式增长,要求医疗信息化架构可扩展
医疗卫生数据主要来源于三方面:
1、生命科学领域及医药研发领域
在生命科学领域,随着高通量测序的技术发展和逐步应用,生命科学领域的数据量正在高速增长,每台高通量的测序仪每天可产生约100GB的数据,仅华大基因一家中国基因公司,每天就有一百多台这样的测序仪在满负荷的运行着,产生10TB的数据。在医药研发领域,药物研发是相当密集型的过程,一家中小型制药企业年累积的数据量也在TB以上。
2、医疗领域
就医疗机构诊疗数据看,诊疗数据结构复杂包含大量半结构化或非结构化数据,单个半结构化数据(如心电图、B超、CR、CT等)的数据量远远大于单个结构化数据(如XML文档),如一张普通CT图像大约150MB、一个标准的病理图接近5GB,而一个XML文档大小约几十K,随着医疗机构信息化建设转向临床信息系统,越来越多医院将重点建设PACS、LIS系统,从而产生大量非结构化诊疗数据。
医疗领域大数据除医疗机构诊疗数据外,患者在医疗机构就医过程中还将产生挂号、缴费、新农合基金使用情况、医保资金使用情况、诊断结论、诊疗过程等数据。根据卫计委2014年颁布的《人口健康信息管理办法(试行)》要求,电子健康档案、电子病历、全员人口信息等人口健康信息需要实现长期保存,医疗领域数据量将逐年累积增加。
3、移动医疗领域
随着移动互联网、物联网技术的快速发展,可穿戴式医疗设备逐步从概念走向现实。可穿戴式设备最重要的应用就在医疗健康管理领域,从谷歌眼镜、苹果手表到耐克腕带等均具备一定医疗健康管理功能,为用户提供身体素质指标监测、疾病数据跟踪等服务。随着可穿戴式设备的快速发展,未来将产生大量的医疗健康数据。
面对来源丰富且日益膨胀的医疗卫生数据,目前医疗信息化的存储架构无法满足大数据应用的需要,在处理和查询大数据集时更是力不从心,需要设计新的以数据为中心的计算模型和系统架构,把医疗卫生各个业务系统独立的、分散的、不同品牌或不同级别的存储产品统一到一个或几个大的存储池下,形成逻辑上统一的整体,进而根据数据整合或应用整合的需要将数据迁移到相应的存储空间,从而实现医疗信息化中存储架构的统一规划和部署。
(二)数据价值高,要求医疗信息化建设重视数据挖掘
医疗卫生数据结构较为复杂,除了普通结构化数据外,多为半结构化或者非结构化的数据,如心电图、B超、CT、MR、CR、等临床影像文件多为非结构化数据。在“大数据”时代,传统的数据库分析系统正面临着一次历史性变革。
目前国外已经有许多机构开始深入研究医疗数据的挖掘利用,并已经从大数据中找到了与医疗卫生相关的潜在价值,例如:早在2009年,甲型H1N1流感爆发的几周前,Google开发“谷歌流感趋势”延伸服务,通过分析大量用户对于流感有关词条所做的搜索记录识别流感爆发,与官方机构相比Google能提前1-2周预测流感爆发,预测结果与官方数据相关性高达97%。苹果前总裁史蒂夫•乔布斯在与胰腺癌症斗争的过程中也应用了大数据技术,他是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人,通过分析整个基因数据的大数据文档,乔布斯的医生能基于他的特定基因组成按需用药。资料显示,胰腺癌患者的死亡率极高,出现症状后患者的平均寿命仅为9个月,5年生存率不到2%,但是乔布斯通过大数据技术开发出的个性化药物将生命延长了好几年。
相对国外医疗卫生数据挖掘的进展,我国医疗卫生数据挖掘才刚刚起步,大部分医疗卫生机构还停留在数据的精确性层面,而非从数据关联性方面分析挖掘数据价值,需要加大对医疗卫生大数据分析的投入,通过对医疗卫生大数据有效的存储、处理、查询和分析,辅助医生做出更为科学和准确的诊断和用药决策,帮助医院根据患者潜在需求开发全新个性化服务及自动服务,帮助相关研究机构突破医疗方法和药物革新,支持地区甚至全国医疗行业主管部门优化医疗资源及服务配置。
三、大数据时代中国医疗信息化建设的建议
大数据时代医疗信息化建设从产业角度看,未来将创建一个以患者为中心,数据快速流通,精准分析的价值链条。在此链条中政府、医疗卫生机构、医疗信息化软硬件提供商等应明确各自定位,协同合作,才能在大数据时代做好医疗信息化建设。
(一)政府应发挥政策制定、产业发展推动作用
政府在医疗信息化建设中主要发挥政策制定、产业发展推动作用。目前我国医疗信息化标准建设不完备,基础的电子病历和电子健康档案建设标准虽然已经出台,但目前并没有出台针对大数据时代医疗信息化建设中涉及的各项数据的采集、传输、处理及相关医疗信息架构的标准。
(二)医疗卫生机构应前瞻部署医疗信息化建设
医疗卫生机构是医疗信息化建设主体,在进行医疗信息化建设过程中应该有前瞻意识,勇于将新一代信息技术融入医疗信息化建设过程中。目前一些三甲医院已经进行了诸如移动医疗、远程医疗等尝试,但对于大数据在医疗卫生机构应用仍然较为保守,仍停留在BI用大数据辅助办公阶段,用于临床精准用药的较少,未来随着大数据相关技术的逐步成熟,医疗卫生机构应逐步将大数据从辅助办公拓展到提高临床医疗服务质量方面。
(三)ICT厂商应加大上下游合作,瞄准大数据下医疗信息化建设积极开发新产品
软硬件设备厂商作为医疗信息化技术的提供者,应瞄准大数据下医疗信息化建设新机遇开发新产品,加大上下游产业链合作,如针对可穿戴设备产生的大量健康监测数据,医疗信息化软硬件设备厂商可以与下游医疗卫生机构合作,将医疗服务前置,使患者能够尽快发现可能的健康隐患,甚至在家中就能通过智能终端定期查看可穿戴设备中记录的健康信息,并得到医疗机构相关医生给予的医疗健康诊断信息及就诊建议,实现“治已病”向“治未病”的转移;由于可穿戴设备小巧、轻薄的特点对电池的续航能力和CPU、无线传输芯片的功耗提出更为苛刻的要求,医疗信息化软硬件设备厂商需要软硬件厂商与上游处理器、存储器、电源、无线通信、软板、传感器、执行器等主要零部件厂商合作,共同开发具有功耗低功能强的可穿戴式医疗产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08